Open Access
Issue |
J. Space Weather Space Clim.
Volume 14, 2024
Topical Issue - Observing, modelling and forecasting TIDs and mitigating their impact on technology
|
|
---|---|---|
Article Number | 38 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/swsc/2024036 | |
Published online | 17 December 2024 |
- Azeem I, Yue J, Hoffmann L, Miller SD, Straka III WC, Crowley G. 2015. Multisensor profiling of a concentric gravity wave event propagating from the troposphere to the ionosphere. Geophys Res Lett 42: 7874–7880. https://doi.org/10.1002/2015GL065903. [CrossRef] [Google Scholar]
- Azeem I, Vadas SL, Crowley G, Makela JJ. 2017. Traveling ionospheric disturbances over the United States induced by gravity waves from the 2011 Tohoku tsunami and comparison with gravity wave dissipative theory. J Geophys Res Space Phys 122: 3430–3447. https://doi.org/10.1002/2016JA023659. [CrossRef] [Google Scholar]
- Boška J, Šauli P. 2001. Observations of gravity waves of meteorological origin in the F-region ionosphere. Phys Chem Earth Part C Solar Terrest Planet Sci 26(6): 425–428. https://doi.org/10.1016/S1464-1917(01)00024-1. [Google Scholar]
- Chou MY, Lin CCH, Yue J, Tsai HF, Sun YY, Liu JY, Chen CH. 2016. Concentric traveling ionosphere disturbances triggered by Super Typhoon Meranti. Geophys Res Lett 44: 1219–1226. https://doi.org/10.1002/2016GL072205. [Google Scholar]
- Chou M-Y, Yue J, Lin CCH, Rajesh PK, Pedatella NM. 2022. Conjugate effect of the 2011 Tohoku reflected tsunami-driven gravity waves in the ionosphere. Geophys Res Lett 49: e2021GL097170. https://doi.org/10.1029/2021GL097170. [CrossRef] [Google Scholar]
- Chou M-Y, Yue J, Sassi F, McDonald S, Tate J, et al. 2023. Modeling the day-to-day variability of midnight equatorial plasma bubbles with SAMI3/SD-WACCM-X. J Geophys Res Space Phys 128: e2023JA031585. https://doi.org/10.1029/2023JA031585. [CrossRef] [Google Scholar]
- Crowley G, Jones TB, Dudeney JR. 1987. Comparison of short period TID morphologies in Antarctica during geomagnetically quiet and active intervals. J Atmos Terrest Phys 49(11–12): 1155–1162. https://doi.org/10.1016/0021-9169(87)90098-5. [CrossRef] [Google Scholar]
- Crowley G, Rodrigues FS. 2012. Characteristics of traveling ionospheric disturbances observed by the TIDDBIT sounder. Radio Sci 47(4): 1–12. https://doi.org/10.1029/2011RS004959. [CrossRef] [Google Scholar]
- Colbert M, Stensrud DJ, Markowski PM, Richardson YP. 2019. Processes associated with convection initiation in the North American Mesoscale Forecast System, version 3 (NAMv3). Weather Forecast 34: 683–700. https://doi.org/10.1175/WAF-D-18-0175.1. [CrossRef] [Google Scholar]
- Fritts DC, Vadas SL. 2008. Gravity wave penetration into the thermosphere: sensitivity to solar cycle variations and mean winds. Ann Geophys 26: 3841–3861. https://doi.org/10.5194/angeo-26-3841-2008. [CrossRef] [Google Scholar]
- Gavrilov NM, Kshevetskii SP. 2018. Features of the supersonic gravity wave penetration from the Earth’s surface to the upper atmosphere. Radiophys Quantum Electron 61: 243–252. https://doi.org/10.1007/s11141-018-9885-4. [CrossRef] [Google Scholar]
- Gelaro R, McCarty W, Suárez JM, Todling R, Molod A, et al. 2017. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J Clim 30: 5419–5454. https://doi.org/10.1175/JCLI-D-16-0758.1. [CrossRef] [Google Scholar]
- Heale CJ, Lund T, Fritts DC. 2020. Convectively generated gravity waves during solstice and equinox conditions. J Geophys Res Atmos 125: e2019JD031582. https://doi.org/10.1029/2019JD031582. [CrossRef] [Google Scholar]
- Heale CJ, Inchin PA, Snively JB. 2022. Primary versus secondary gravity wave responses at F-region heights generated by a convective source. J Geophys Res Space Phys 127: e2021JA029947. https://doi.org/10.1029/2021JA029947. [CrossRef] [Google Scholar]
- Heale CJ, Bossert K, Vadas SL. 2022. 3D numerical simulation of secondary wave generation from mountain wave breaking over Europe. J Geophys Res Atmos 127: e2021JD035413. https://doi.org/10.1029/2021JD035413. [CrossRef] [Google Scholar]
- Hernández-Pajares M, Juan JM, Sanz J. 2006. Medium-scale traveling ionospheric disturbances affecting GPS measurements: spatial and temporal analysis. J Geophys Res 111: A07S11. https://doi.org/10.1029/2005JA011474. [CrossRef] [Google Scholar]
- Hernández-Pajares M, Garcia-Fernàndez M, Rius A, Notarpietro R, von Engeln A, Olivares-Pulido G, Aragón-Àngel À, García-Rigo A. 2017. Electron density extrapolation above F2 peak by the linear Vary-Chap model supporting new Global Navigation Satellite Systems-LEO occultation missions. J Geophys Res Space Phys 122: 9003–9014. https://doi.org/10.1002/2017JA023876. [CrossRef] [Google Scholar]
- Hines CO. 1960. Internal atmospheric gravity waves at ionospheric heights. Can J Phys 38(11): 1441–1481. https://doi.org/10.1139/p60-150. [CrossRef] [Google Scholar]
- Hirt M, Rasp S, Blahak U, Craig GC. 2019. Stochastic parameterization of processes leading to convective initiation in kilometer-scale models. Month Weather Rev 147: 3917–3934. https://doi.org/10.1175/MWR-D-19-0060.1. [CrossRef] [Google Scholar]
- Hocke K, Schlegel K. 1996. A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982–1995. Ann Geophys 14: 917–940. https://doi.org/10.1007/s00585-996-0917-6. [Google Scholar]
- Holton JR, Hakim GJ. 2013. An introduction to dynamic meteorology, Academic press, ISBN:0123848660. [Google Scholar]
- Hoffmann L, Xue X, Alexander MJ. 2013. A global view of stratospheric gravity wave hotspots located with atmospheric infrared sounder observations. J Geophys Res Atmos 118: 416–434. https://doi.org/10.1029/2012JD018658. [CrossRef] [Google Scholar]
- Huba JD, Joyce G, Krall J. 2008. Three-dimensional equatorial spread F modeling. Geophys Res Lett 35: L10102. https://doi.org/10.1029/2008GL033509. [Google Scholar]
- Huba JD, Joyce G, Fedder JA. 2000. Sami2 is Another Model of the Ionosphere (SAMI2): a new low-latitude ionosphere model. J Geophys Res 105(A10): 23035–23053. https://doi.org/10.1029/2000JA000035. [CrossRef] [Google Scholar]
- Huba JD, Drob DP, Wu T-W, Makela JJ. 2015. Modeling the ionospheric impact of tsunami-driven gravity waves with SAMI3: conjugate effects. Geophys Res Lett 42: 5719–5726. https://doi.org/10.1002/2015GL064871. [CrossRef] [Google Scholar]
- Huba JD, Maute A, Crowley G. 2017. SAMI3_ICON: model of the ionosphere/plasmasphere system. Space Sci Rev 212: 731. https://doi.org/10.1007/s11214-017-0415-z. [CrossRef] [Google Scholar]
- Huba JD, Krall J. 2013. Impact of meridional winds on equatorial spread F: revisited. Geophys Res Lett 40: 1268–1272. https://doi.org/10.1002/grl.50292. [CrossRef] [Google Scholar]
- Huba JD, Liu H-L. 2020. Global modeling of equatorial spread F with SAMI3/WACCM-X. Geophys Res Lett 47: e2020GL088258. https://doi.org/10.1029/2020GL088258. [CrossRef] [Google Scholar]
- Hung RJ, Kuo JP. 1978. Ionospheric observation of gravity-waves associated with Hurricane Eloise. J Geophys 45: 67–80. https://n2t.net/ark:/88439/y031553. [Google Scholar]
- Hunsucker RD. 1982. Atmospheric gravity waves generated in the high-latitude ionosphere: a review. Rev Geophys 20(2): 293–315. https://doi.org/10.1029/RG020i002p00293. [CrossRef] [Google Scholar]
- Jacobson AR, Carlos RC, Massey RS, Wu G. 1995. Observations of traveling ionospheric disturbances with a satellite-beacon radio interferometer: seasonal and local time behavior. J Geophys Res 100(A2): 1653–1665. https://doi.org/10.1029/94JA02663. [CrossRef] [Google Scholar]
- Inchin PA, Heale CJ, Snively JB, Zettergren MD. 2020. The dynamics of nonlinear atmospheric acoustic-gravity waves generated by tsunamis over realistic bathymetry. J Geophys Res Space Phys 125: e2020JA028309. https://doi.org/10.1029/2020JA028309. [CrossRef] [Google Scholar]
- Ishida J, Aranami K, Kawano K, Matsubayashi K, Kitamura Y, Muroi C. 2022. ASUCA: the JMA operational non-hydrostatic model. J Meteorol Soc Japan 100: 825–846. https://doi.org/10.2151/jmsj.2022-043. [CrossRef] [Google Scholar]
- Kelley MC, Miller CA. 1997. Electrodynamics of midlatitude spread F, 3. Electrohydrodynamic waves? A new look at the role of electric fields in thermospheric wave dynamics. J Geophys Res 102: 11539–11547. https://doi.org/10.1029/96JA03841. [CrossRef] [Google Scholar]
- Kim S-Y, Chun H-Y, Wu D. 2009. A study on stratospheric gravity waves generated by Typhoon Ewiniar: numerical simulations and satellite observations. J Geophys Res 114: D22104. https://doi.org/10.1029/2009JD011971. [Google Scholar]
- Kotake N, Otsuka Y, Ogawa T, Tsugawa T, Saito A. 2007. Statistical study of medium-scale traveling ionospheric disturbances observed with the GPS networks in Southern California. Earth Planet Space 59: 95–102. https://doi.org/10.1186/BF03352681. [CrossRef] [Google Scholar]
- Lane TP, Knievel JC. 2005. Some effects of model resolution on simulated gravity waves generated by deep, mesoscale convection. J Atmos Sci 62: 3408–3419. https://doi.org/10.1175/JAS3513.1. [CrossRef] [Google Scholar]
- Lee WK, Kil H, Paxton LJ. 2021. Global distribution of nighttime MSTIDs and its association with E region irregularities seen by CHAMP satellite. J Geophys Res Space Phys 126: e2020JA028836. https://doi.org/10.1029/2020JA028836. [CrossRef] [Google Scholar]
- Liu H-L, McInerney JM, Santos S, Lauritzen PH, Taylor MA, Pedatella NM. 2014. Gravity waves simulated by high-resolution whole atmosphere community climate model. Geophys Res Lett 41: 9106–9112. https://doi.org/10.1002/2014GL062468. [CrossRef] [Google Scholar]
- Liu JY, Chen CH, Lin CH, Tsai HF, Chen CH, Kamogawa M. 2011. Ionospheric disturbances triggered by the 11 March 2011 M9.0 Tohoku earthquake. J Geophys Res 116: A06319. https://doi.org/10.1029/2011JA016761. [Google Scholar]
- Liu H-L, Bardeen CG, Foster BT, Lauritzen P, Liu J, Lu G, et al. 2018. Development and validation of the Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension (WACCM-X 2.0). J Adv Model Earth Syst 10: 381–402. https://doi.org/10.1002/2017MS001232. [CrossRef] [Google Scholar]
- Marks CJ, Eckermann SD. 1995. A three-dimensional nonhydrostatic ray-tracing model for gravity waves: formulation and preliminary results for the middle atmosphere. J Atmos Sci 52(11): 1959–1984. https://doi.org/10.1175/1520-0469(1995)052<1959:ATDNRT>2.0.CO;2. [CrossRef] [Google Scholar]
- Martinis C, Baumgardner J, Wroten J, Mendillo M. 2011. All-sky imaging observations of conjugate medium-scale traveling ionospheric disturbances in the American sector. J Geophys Res 116: A05326. https://doi.org/10.1029/2010JA016264. [Google Scholar]
- McDonald SE, Sassi F, Mannucci AJ. 2015. SAMI3/SD-WACCM-X simulations of ionospheric variability during northern winter 2009. Space Weather 13: 568–584. https://doi.org/10.1002/2015SW001223. [CrossRef] [Google Scholar]
- McDonald SE, Sassi F, Tate J, McCormack J, Kuhl DD, Drob DP, Metzler C, Mannucci AJ. 2018. Impact of non-migrating tides on the low latitude ionosphere during a sudden stratospheric warming event in January 2010. J Atmos Solar Terrest Phys 171: 188–200. https://doi.org/10.1016/j.jastp.2017.09.012. [CrossRef] [Google Scholar]
- Miller CA, Swartz WE, Kelley MC, Mendillo M, Nottingham D, Scali J, Reinisch B. 1997. Electrodynamics of midlatitude spread F: 1. Observations of unstable, gravity wave-induced ionospheric electric fields at tropical latitudes. J Geophys Res 102(A6): 11521–11532. https://doi.org/10.1029/96JA03839. [CrossRef] [Google Scholar]
- Miyoshi Y, Jin H, Fujiwara H, Shinagawa H. 2018. Numerical study of traveling ionospheric disturbances generated by an upward propagating gravity wave. J Geophys Res Space Phys 123: 2141–2155. https://doi.org/10.1002/2017JA025110. [Google Scholar]
- Nappo CJ. 2013. An introduction to atmospheric gravity waves. Academic Press. ISBN: 978-0-12-385223-6. [Google Scholar]
- Nicolls MJ, Vadas SL, Aponte N, Sulzer MP. 2014. Horizontal parameters of daytime thermospheric gravity waves and E region neutral winds over Puerto Rico. J Geophys Res Space Phys 119: 575–600. https://doi.org/10.1002/2013JA018988. [CrossRef] [Google Scholar]
- Nishioka M, Tsugawa T, Kubota M, Ishii M. 2013. Concentric waves and short-period oscillations observed in the ionosphere after the 2013 Moore EF5 tornado. Geophys Res Lett 40: 5581–5586. https://doi.org/10.1002/2013GL057963. [CrossRef] [Google Scholar]
- Otsuka Y. 2021. Medium-scale traveling ionospheric disturbances. In: Ionosphere dynamics and applications, geophysical monograph series, pp. 421–437 (eds C. Huang, G. Lu, Y. Zhang, L.J. Paxton). https://doi.org/10.1002/9781119815617.ch18. [CrossRef] [Google Scholar]
- Otsuka Y, Suzuki K, Nakagawa S, Nishioka M, Shiokawa K, Tsugawa T. 2013. GPS observations of medium-scale traveling ionospheric disturbances over Europe. Ann Geophys 31: 163–172. https://doi.org/10.5194/angeo-31-163-2013. [CrossRef] [Google Scholar]
- Perwitasari S, Nakamura T, Tsugawa T, Nishioka M, Tomikawa Y, Ejiri MK, et al. 2022. Propagation direction analyses of medium-scale traveling ionospheric disturbances observed over North America with GPS-TEC perturbation maps by three-dimensional spectral analysis method. J Geophys Res Space Phys 127: e2020JA028791. https://doi.org/10.1029/2020JA028791. [CrossRef] [Google Scholar]
- Perkins F. 1973. Spread F and ionospheric currents. J Geophys Res 78: 218–226. https://doi.org/10.1029/JA078i001p00218. [CrossRef] [Google Scholar]
- Pedatella NM, Liu H-L, Marsh DR, Raeder K, Anderson JL. 2019. Error growth in the mesosphere and lower thermosphere based on hindcast experiments in a whole atmosphere model. Space Weather 17: 1442–1460. https://doi.org/10.1029/2019SW002221. [CrossRef] [Google Scholar]
- Plougonven R, Zhang F. 2014. Internal gravity waves from atmospheric jets and fronts. Rev Geophys 52: 33–76. https://doi.org/10.1002/2012RG000419. [CrossRef] [Google Scholar]
- Sassi F, Liu H-L, Ma J, Garcia RR. 2013. The lower thermosphere during the northern hemisphere winter of 2009: a modeling study using high-altitude data assimilation products in WACCM-X. J Geophys Res 118: 8954–8968. https://doi.org/10.1002/jgrd.50632. [CrossRef] [Google Scholar]
- Shiokawa K, Otsuka Y, Ihara C, Ogawa T, Rich FJ. 2003. Ground and satellite observations of nighttime medium-scale traveling ionospheric disturbance at midlatitude. J Geophys Res 108(A4): 1145. https://doi.org/10.1029/2002JA009639. [CrossRef] [Google Scholar]
- Smith AK, Pedatella NM, Marsh DR, Matsuo T. 2017. On the dynamical control of the mesosphere-lower thermosphere by the lower and middle atmosphere. J Atmos Sci 74(3): 933–947. https://doi.org/10.1175/JAS-D-16-0226.1. [CrossRef] [Google Scholar]
- Stewart RE, Bachand D, Dunkley RR, Giles AC, Lawson B, Legal L, Miller ST, Yau MK. 1995. Winter storms over Canada. Atmos Ocean 33(2): 223–247. https://doi.org/10.1080/07055900.1995.9649533. [CrossRef] [Google Scholar]
- Stull RB. 1976. Internal gravity waves generated by penetrative convection. J Atmos Sci 33: 1279–1286. https://doi.org/10.1175/1520-0469(1976)033<1279:IGWGBP>2.0.CO;2. [CrossRef] [Google Scholar]
- Taylor MJ, Hapgood MA. 1988. Identification of a thunderstorm as a source of short period gravity waves in the upper atmospheric nightglow emissions. Planet Space Sci 36: 975–985. https://doi.org/10.1016/0032-0633(88)90035-9. [CrossRef] [Google Scholar]
- Takahashi H, Figueiredo CAOB, Essien P, Wrasse CM, Barros D, Nyassor PK, Paulino I, Egito F, Rosa GM, Sampaio AHR. 2022. Signature of gravity wave propagations from the troposphere to ionosphere. Ann Geophys 40: 665–672. https://doi.org/10.5194/angeo-40-665-2022. [CrossRef] [Google Scholar]
- Tapp MC, White PW. 1976. A non-hydrostatic mesoscale model. Quart J Royal Meteorol Soc 102: 277–296. https://doi.org/10.1002/qj.49710243202. [CrossRef] [Google Scholar]
- Themens DR, Watson C, Žagar N, Vasylkevych S, Elvidge S, McCaffrey A, et al. 2022. Global propagation of ionospheric disturbances associated with the 2022 Tonga volcanic eruption. Geophys Res Lett 49: e2022GL098158. https://doi.org/10.1029/2022GL098158. [CrossRef] [Google Scholar]
- Vadas SL. 2007. Horizontal and vertical propagation and dissipation of gravity waves in the thermosphere from lower atmospheric and thermospheric sources. J Geophys Res 112: A06305. https://doi.org/10.1029/2006JA011845. [Google Scholar]
- Vadas SL. 2013. Compressible f-plane solutions to body forces, heatings, and coolings, and application to the primary and secondary gravity waves generated by a deep convective plume. J Geophys Res Space Phys 118: 2377–2397. https://doi.org/10.1002/jgra.50163. [CrossRef] [Google Scholar]
- Vadas SL, Fritts DC. 2004. Thermospheric responses to gravity waves arising from mesoscale convective complexes. J Atmos Solar Terrest Phys 66(6–9): 781–804. https://doi.org/10.1016/j.jastp.2004.01.025. [CrossRef] [Google Scholar]
- Vadas SL, Fritts DC. 2009. Reconstruction of the gravity wave field from convective plumes via ray tracing. Ann Geophys 27: 147–177. https://doi.org/10.5194/angeo-27-147-2009. [CrossRef] [Google Scholar]
- Vadas SL, Liu H. 2009. Generation of large-scale gravity waves and neutral winds in the thermosphere from the dissipation of convectively generated gravity waves. J Geophys Res 114: A10310. https://doi.org/10.1029/2009JA014108. [Google Scholar]
- Vadas SL, Liu H-L. 2013. Numerical modeling of the large-scale neutral and plasma responses to the body forces created by the dissipation of gravity waves from 6 h of deep convection in Brazil. J Geophys Res Space Phys 118: 2593–2617. https://doi.org/10.1002/jgra.50249. [CrossRef] [Google Scholar]
- Vadas SL, Crowley G. 2010. Sources of the traveling ionospheric disturbances observed by the ionospheric TIDDBIT sounder near Wallops Island on 30 October 2007. J Geophys Res 115: A07324. https://doi.org/10.1029/2009JA015053. [Google Scholar]
- Vadas SL, Jia Y, Joe S, Pete S, Alan L. 2009. A model study of the effects of winds on concentric rings of gravity waves from a convective plume near Fort Collins on 11 May 2004. J Geophys Res 114: D06103. https://doi.org/10.1029/2008JD010753. [Google Scholar]
- Vadas SL, Azeem I. 2021. Concentric secondary gravity waves in the thermosphere and ionosphere over the continental United States on March 25–26, 2015 from deep Convection. J Geophys Res Space Phys 126: e2020JA028275. https://doi.org/10.1029/2020JA028275. [CrossRef] [Google Scholar]
- Vadas SL, Figueiredo C, Becker E, Huba JD, Themens DR, Hindley N, Mrak S, Galkin I, Bossert K. 2023. Traveling ionospheric disturbances induced by the secondary gravity waves from the Tonga eruption on 15 January 2022: modeling with MESORAC-HIAMCM-SAMI3 and comparison with GPS/TEC and ionosonde data. J Geophys Res Space Phys 128(6): e2023JA031408. https://doi.org/10.1029/2023JA031408. [CrossRef] [Google Scholar]
- Walterscheid RL, Hecht JH. 2003. A reexamination of evanescent acoustic-gravity waves: special properties and aeronomical significance. J Geophys Res 108(D11): 4340. https://doi.org/10.1029/2002JD002421. [Google Scholar]
- Wright CJ, Hindley NP, Alexander MJ, Barlow M, Hoffmann L, et al. 2022. Surface-to-space atmospheric waves from Hunga Tonga–Hunga Ha’apai eruption. Nature 609: 741–746. https://doi.org/10.1038/s41586-022-05012-5. [CrossRef] [Google Scholar]
- Xu S, Vadas SL, Yue J. 2024. Quiet time thermospheric gravity waves observed by GOCE and CHAMP. J Geophys Res Space Phys 129: e2023JA032078. https://doi.org/10.1029/2023JA032078. [CrossRef] [Google Scholar]
- Yang Z, Gu S-Y, Qin Y, Teng C-K, Huang F, Sun W, Dou X. 2022. Statistical study of F-region short period ionospheric disturbances related to convection in the lower atmosphere over Wuhan, China. Space Weather 20: e2022SW003140. https://doi.org/10.1029/2022SW003140. [CrossRef] [Google Scholar]
- Yokoyama T, Hysell DL. 2010. A new midlatitude ionosphere electrodynamics coupling model (MIECO): latitudinal dependence and propagation of medium-scale traveling ionospheric disturbances. Geophys Res Lett 37: L08105. https://doi.org/10.1029/2010GL042598. [Google Scholar]
- Zawdie K, Belehaki A, Burleigh M, Chou M-Y, Dhadly MS. 2022. Impacts of acoustic and gravity waves on the ionosphere. Front Astron Space Sci 9: 1064152. https://doi.org/10.3389/fspas.2022.1064152. [CrossRef] [Google Scholar]
- Zettergren MD, Snively JB. 2015. Ionospheric response to infrasonic-acoustic waves generated by natural hazard events. J Geophys Res Space Phys 120: 8002–8024. https://doi.org/10.1002/2015JA021116. [CrossRef] [Google Scholar]
- Zhang S-R, Vierinen J, Ercha A, Goncharenko LP, Philip JE, William R, Anthea JC, Andre S. 2022. Tonga volcanic eruption induced global propagation of ionospheric disturbances via lamb waves. Front Astron Space Sci 9: 871275. https://www.frontiersin.org/articles/10.3389/fspas.2022.871275. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.