Issue |
J. Space Weather Space Clim.
Volume 14, 2024
Topical Issue - CMEs, ICMEs, SEPs: Observational, Modelling, and Forecasting Advances
|
|
---|---|---|
Article Number | 11 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/swsc/2024009 | |
Published online | 19 April 2024 |
- Agueda N, Vainio R. 2013. On the parametrization of the energetic-particle pitch-angle diffusion coeffcient. J Space Weather Space Clim 3: A10. https://doi.org/10.1051/swsc/2013034. [CrossRef] [EDP Sciences] [Google Scholar]
- Agueda N, Vainio R, Lario D, Sanahuja B. 2008. Injection and interplanetary transport of near-relativistic electrons: Modeling the impulsive event on 2000 May 1. Astrophys J 675: 1601. https://doi.org/10.1086/527527. [CrossRef] [Google Scholar]
- Allen RC, Ho GC, Mason GM, Li G, Jian LK, et al. 2021. Radial evolution of a CIR: Observations from a nearly radially aligned event between parker solar probe and STEREO-A. Geophys Res Lett 48(e91): 376. https://doi.org/10.1029/2020GL091376. [CrossRef] [Google Scholar]
- Bandyopadhyay R, Matthaeus WH, McComas DJ, Chhiber R, Usmanov AV, et al. 2022. Sub-Alfvénic solar wind observed by the parker solar probe: Characterization of turbulence, anisotropy, intermittency, and switchback. Astrophys J Lett 926: L1. https://doi.org/10.3847/2041-8213/ac4a5c. [CrossRef] [Google Scholar]
- Baratashvili T, Verbeke C, Wijsen N, Poedts S. 2022. Improving CME evolution and arrival predictions with AMR and grid stretching in Icarus. Astron Astrophys 667: A133. https://doi.org/10.1051/0004-6361/202244111. [CrossRef] [EDP Sciences] [Google Scholar]
- Cane HV, Richardson IG, von Rosenvinge TT. 2010. A study of solar energetic particle events of 1997–2006: Their composition and associations. J Geophys Res 115(A08): 101. https://doi.org/10.1029/2009JA014848. [Google Scholar]
- Desai M, Giacalone J. 2016. Large gradual solar energetic particle events. Living Rev Sol Phys 13: 3. https://doi.org/10.1007/s41116-016-0002-5. [CrossRef] [Google Scholar]
- Gopalswamy N. 2018. Chapter 2 – Extreme solar eruptions and their space weather consequences. In: Extreme Events in Geospace, vol. 37. Buzulukova N (Ed.), Elsevier. https://doi.org/10.1016/B978-0-12-812700-1.00002-9. [Google Scholar]
- Hapgood MA. 2011. Towards a scientific understanding of the risk from extreme space weather. Adv Space Res 47: 2059. https://doi.org/10.1016/j.asr.2010.02.007. [CrossRef] [Google Scholar]
- Isenberg PA. 1997. A hemispherical model of anisotropic interstellar pickup ions. J Geophys Res 102: 4719. https://doi.org/10.1029/96JA03671. [CrossRef] [Google Scholar]
- Jackel U, Schlickeiser R. 1992. Quasilinear theory of cosmic ray pitch-angle diffusion for generalized turbulence models. Ann Geophyis 10: 541. [Google Scholar]
- Jian L, Russell CT, Luhmann JG, Skoug RM. 2006. Properties of stream interactions at one AU during 1995–2004. Sol Phys 239: 337. https://doi.org/10.1007/s11207-006-0132-3. [CrossRef] [Google Scholar]
- Jiao Y, Liu YD, Ran H, Cheng W. 2024. Properties of steady sub-Alfvénic solar wind in comparison with super-Alfvénic wind from parker solar probe measurements. Astrophys J 960: 42. https://doi.org/10.3847/1538-4357/ad0dfe. [CrossRef] [Google Scholar]
- Jokipii JR. 1966. Cosmic-ray propagation. I. Charged particles in a random magnetic field. Astrophys J 146: 480. https://doi.org/10.1086/148912. [CrossRef] [Google Scholar]
- Kallenrode MB. 2003. Current views on impulsive and gradual solar energetic particle events. J Phys G Nucl Part Phys 29: 965. https://doi.org/10.1088/0954-3899/29/5/316. [Google Scholar]
- Kallenrode MB. 2004. Space Physics, Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09959-9. [CrossRef] [Google Scholar]
- Keppens R, Meliani Z, van Marle AJ, Delmont P, Vlasis A, et al. 2012. Parallel, grid-adaptive approaches for relativistic hydro and magnetohydrodynamics. J Comput Phys 231: 718. https://doi.org/10.1016/j.jcp.2011.01.020. [CrossRef] [Google Scholar]
- Keppens R, Nool M, Tóth G, Goedbloed JP. 2003. Adaptive mesh refinement for conservative systems: Multi-dimensional efficiency evaluation. Comput Phys Commun 153: 317. https://doi.org/10.1016/S0010-4655(03)00139-5. [CrossRef] [Google Scholar]
- Keppens R, Popescu Braileanu B, Zhou Y, Ruan W, Xia C, et al. 2023. MPI-AMRVAC 3.0: Updates to an open-source simulation framework. Astron Astrophys 673: A66. https://doi.org/10.1051/0004-6361/202245359. [CrossRef] [EDP Sciences] [Google Scholar]
- Klassen A, Dresing N, Gómez-Herrero R, Heber B. 2015. First simultaneous observations of a near-relativistic electron spike event by both STEREO spacecraft. Astron Astrophys 580: A115. https://doi.org/10.1051/0004-6361/201525700. [CrossRef] [EDP Sciences] [Google Scholar]
- Klimas AJ, Sandri G. 1971. Foundation of the theory of cosmic-ray transport in random magnetic fields. Astrophys J 169: 41. https://doi.org/10.1086/151116. [CrossRef] [Google Scholar]
- Kozarev KA, Evans RM, Schwadron NA, Dayeh MA, Opher M, et al. 2013. Global numerical modeling of energetic proton acceleration in a coronal mass ejection traveling through the solar corona. Astrophys J 778: 43. https://doi.org/10.1088/0004-637X/778/1/43. [CrossRef] [Google Scholar]
- Kozarev KA, Schwadron NA, Dayeh MA, Townsend LW, Desai MI, et al. 2010. Modeling the 2003 Halloween events with EMMREM: Energetic particles, radial gradients, and coupling to MHD. Space Weather 8: S00E08. https://doi.org/10.1029/2009SW000550. [Google Scholar]
- le Roux JA, Webb GM. 2009. Time-dependent acceleration of interstellar pickup ions at the heliospheric termination shock using a focused transport approach. J Geophys Res 693: 534. https://doi.org/10.1088/0004-637X/693/1/534. [Google Scholar]
- Luhmann JG, Mays ML, Odstrcil D, Li Y, Bain H, et al. 2017. Modeling solar energetic particle events using ENLIL heliosphere simulations. Space Weather 15: 934. https://doi.org/10.1002/2017SW001617. [NASA ADS] [CrossRef] [Google Scholar]
- Manchester WB IV, van der Holst B, Tóth G, Gombosi TI. 2012. The coupled evolution of electrons and ions in coronal mass ejection-driven shocks. Astrophys J 756: 81. https://doi.org/10.1088/0004-637X/756/1/81. [CrossRef] [Google Scholar]
- Nool M, Keppens R. 2002. AMRVAC: A multidimensional grid-adaptive magnetofluid dynamics code. Comput Methods Appl Math 2: 92. https://doi.org/10.2478/cmam-2002-0005. [CrossRef] [Google Scholar]
- Odstrcil D, Pizzo VJ, Arge CN. 2005. Propagation of the 12 May 1997 interplanetary coronal mass ejection in evolving solar wind structures. J Geophys Res 110(A02): 106. https://doi.org/10.1029/2004JA010745. [Google Scholar]
- Odstrcil D, Riley P, Zhao XP. 2004. Numerical simulation of the 12 May 1997 interplanetary CME event. J Geophys Res 109(A02): 116. https://doi.org/10.1029/2003JA010135. [Google Scholar]
- Perri S, Bykov A, Fahr H, Fichtner H, Giacalone J. 2022. Recent developments in particle acceleration at shocks: Theory and observations. Space Sci Rev 218: 26. https://doi.org/10.1007/s11214-022-00892-5. [CrossRef] [Google Scholar]
- Petrosian V. 2016. Particle acceleration in solar flares and associated CME shocks. Astrophys J 830: 28. https://doi.org/10.3847/0004-637X/830/1/28. [CrossRef] [Google Scholar]
- Petrosian V, Liu S. 2004. Stochastic acceleration of electrons and protons. I. Acceleration by parallel-propagating waves. Astrophys J 610: 550. https://doi.org/10.1086/421486. [CrossRef] [Google Scholar]
- Pizzo VJ. 1991. The evolution of corotating stream fronts near the ecliptic plane in the inner solar system: 2. Three-dimensional tilted-dipole fronts. J Geophys Res 96: 5405. https://doi.org/10.1029/91JA00155. [CrossRef] [Google Scholar]
- Pomoell J, Poedts S. 2018. EUHFORIA: European heliospheric forecasting information asset. J Space Weather Space Clim 8: A35. https://doi.org/10.1051/swsc/2018020. [Google Scholar]
- Reames DV. 1999. Particle acceleration at the Sun and in the heliosphere. Space Sci Rev 90: 413. https://doi.org/10.1023/A:1005105831781. [CrossRef] [Google Scholar]
- Reames DV. 2017. Solar Energetic Particles. Springer Cham, Cham. https://doi.org/10.1007/978-3-030-66402-2. [CrossRef] [Google Scholar]
- Richardson IG. 2004. Energetic particles and corotating interaction regions in the solar wind. Space Sci Rev 111: 267. https://doi.org/10.1023/B:SPAC.0000032689.52830.3e. [CrossRef] [Google Scholar]
- Richardson IG. 2018. Solar wind stream interaction regions throughout the heliosphere. Living Rev Sol Phys 15: 1. https://doi.org/10.1007/s41116-017-0011-z. [CrossRef] [Google Scholar]
- Roelof EC. 1969. Propagation of solar cosmic rays in the interplanetary magnetic field. In: Lectures in High-Energy Astrophysics, Ögelman H, Wayland JR (Eds.), Scientific and Technical Information Division, Office of Technology Utilization, NASA, Washington, DC, p. 111. [Google Scholar]
- Ruffolo D. 1995. Effect of adiabatic deceleration on the focused transport of solar cosmic rays. Astrophys J 442: 861. https://doi.org/10.48550/arXiv.astro-ph/9408056. [CrossRef] [Google Scholar]
- Schrijver CJ, Dobbins R, Murtagh W, Petrinec SM. 2014. Assessing the impact of space weather on the electric power grid based on insurance claims for electrical equipment. Space Weather 12: 487. https://doi.org/10.1002/2014SW001066. [NASA ADS] [CrossRef] [Google Scholar]
- Schrijver CJ, Kauristie K, Aylward AD, Denardini CM, Gibson SE, et al. 2015. Understanding space weather to shield society: A global road map for 2015–2025 commissioned by COSPAR and ILWS. Adv Space Res 55: 2745. https://doi.org/10.1016/j.asr.2015.03.023. [CrossRef] [Google Scholar]
- Skilling J. 1971. Cosmic rays in the galaxy: Convection or diffusion? Astrophys J 170: 265. https://doi.org/10.1086/151210. [CrossRef] [Google Scholar]
- Skilling J. 1975. Cosmic ray streaming – I. Effect of Alfvén waves on particles. Mon Notices Royal Astron Soc 172: 557. https://doi.org/10.1093/mnras/172.3.557. [CrossRef] [Google Scholar]
- Smith EJ, Wolfe JH. 1976. Observations of interaction regions and corotating shocks between one and five AU: Pioneers 10 and 11. Geophys Res Lett 3: 137. https://doi.org/10.1029/GL003i003p00137. [CrossRef] [Google Scholar]
- Strauss RD, Effenberger F. 2017. A Hitch-Hiker’s guide to stochastic differential equations. Space Sci Rev 212: 151. https://doi.org/10.1007/s11214-017-0351-y. [CrossRef] [Google Scholar]
- Tóth G, Odstrcil D. 1996. Comparison of some flux corrected transport and total variation diminishing numerical schemes for hydrodynamic and magnetohydrodynamic problems. J Comput Phys 128: 82. https://doi.org/10.1006/jcph.1996.0197. [CrossRef] [Google Scholar]
- Vainio R, Afanasiev A. 2018. Particle acceleration mechanisms. In: Solar Particle Radiation Storms Forecasting and Analysis, vol. 45, Malandraki O, Crosby N (Eds.), Springer Cham. https://doi.org/10.1007/978-3-319-60051-2_3. [Google Scholar]
- van den Berg J, Strauss DT, Effenberger F. 2020. A primer on focused solar energetic particle transport. Space Sci Rev 216: 146. https://doi.org/10.1007/s11214-020-00771-x. [CrossRef] [Google Scholar]
- Verbeke C, Baratashvili T, Poedts S. 2022. ICARUS, a new inner heliospheric model with a flexible grid. Astron Astrophys 662: A50. https://doi.org/10.1051/0004-6361/202141981. [CrossRef] [EDP Sciences] [Google Scholar]
- Wijsen N. 2020. PARADISE: A model for energetic particle transport in the solar wind. Ph.D. dissertation, KU Leuven and Univ. Barcelona, Belgium, Spain. [Google Scholar]
- Wijsen N, Aran A, Pomoell J, Poedts S. 2019. Modelling three-dimensional transport of solar energetic protons in a corotating interaction region generated with EUHFORIA. Astron Astrophys 622: A28. https://doi.org/10.1051/0004-6361/201833958. [CrossRef] [EDP Sciences] [Google Scholar]
- Wijsen N, Aran A, Scolini C, Lario D, Afanasiev A, et al. 2022. Observation-based modelling of the energetic storm particle event of 14 July 2012. Astron Astrophys 659: A187. https://doi.org/10.1051/0004-6361/202142698. [CrossRef] [EDP Sciences] [Google Scholar]
- Wijsen N, Lario D, Sánchez-Cano B, Jebaraj IC, Dresing N, et al. 2023. The effect of the ambient solar wind medium on a CME-driven shock and the associated gradual solar energetic particle event. Astrophys J 950: 172. https://doi.org/10.3847/1538-4357/acd1ed. [CrossRef] [Google Scholar]
- Wijsen N, Samara E, Aran A, Lario D, Pomoell J, et al. 2021. A self-consistent simulation of proton acceleration and transport near a high-speed solar wind stream. Astrophys J Lett 908: L26. https://doi.org/10.3847/2041-8213/abe1cb. [CrossRef] [Google Scholar]
- Woodward P, Colella P. 1984. The numerical simulation of two-dimensional fluid flow with strong shocks. J Comput Phys 54: 115. https://doi.org/10.1016/0021-9991(84)90142-6. [CrossRef] [Google Scholar]
- Xia C, Teunissen J, El Mallah I, Chané E, Keppens R. 2018. MPI-AMRVAC 2.0 for solar and astrophysical applications. Astrophys J 234: 30. https://doi.org/10.3847/1538-4365/aaa6c8. [CrossRef] [Google Scholar]
- Young MA, Schwadron NA, Gorby M, Linker J, Caplan RM, et al. 2021. Energetic proton propagation and acceleration simulated for the bastille day event of 2000 July 14. Astrophys J 909: 160. https://doi.org/10.3847/1538-4357/abdf5f. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.