Open Access
Review
Issue |
J. Space Weather Space Clim.
Volume 14, 2024
|
|
---|---|---|
Article Number | 12 | |
Number of page(s) | 18 | |
DOI | https://doi.org/10.1051/swsc/2024014 | |
Published online | 23 August 2024 |
- Aguilar-Rodriguez E, González-Avilés JJ, Riley P, Ben-Nun M, Rodriguez-Martinez M, González RF, Perez-Rivera MA, Raga-Rasmussen AC. 2024. Numerical MHD models of stream interaction regions (SIRs) and corotating interaction regions (CIRs) using sunRunner3D: comparison with observations. Mon Not R Astron Soc 529(2): 1250–1257. https://doi.org/10.1093/mnras/stae640. [CrossRef] [Google Scholar]
- Allen RC, Ho GC, Jian LK, Vines SK, Bale SD, et al. 2021. A living catalog of stream interaction regions in the Parker Solar Probe era. A&A 650: A25. https://doi.org/10.1051/0004-6361/202039833. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Arge CN, Pizzo VJ. 2000. Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J Geophys Res Space Phys 105(A5): 10465–10479. https://doi.org/10.1029/1999JA000262. [CrossRef] [Google Scholar]
- Bussy-Virat CD, Ridley AJ. 2014. Predictions of the solar wind speed by the probability distribution function model. Space Weather 12(6): 337–353. https://doi.org/10.1002/2014SW001051. [CrossRef] [Google Scholar]
- Feng X, Yang L, Xiang C, Wu ST, Zhou Y, Zhong D. 2010. Three-dimensional solar wind modeling from the sun to earth by a SIP-CESE MHD model with a six-component grid. Astrophys J 723(1): 300. https://doi.org/10.1088/0004-637X/723/1/300. [CrossRef] [Google Scholar]
- Gosling J, Pizzo V. 1999. Formation and evolution of corotating interaction regions and their three dimensional structure. Space Sci Rev 89(1–2): 21–52. https://doi.org/10.1023/A:1005291711900. [CrossRef] [Google Scholar]
- Gosling JT, Hundhausen AJ, Pizzo V, Asbridge JR. 1972. Compressions and rarefactions in the solar wind: Vela 3. J Geophys Res 77(28): 5442–5454. https://doi.org/10.1029/JA077i028p05442. [CrossRef] [Google Scholar]
- Kley W. 1998. On the treatment of the Coriolis force in computational astrophysics. A&A 338: L37–L41. https://doi.org/10.48550/arXiv.astro-ph/9808351. [Google Scholar]
- Kumar S, Paul A, Vaidya B. 2020. A comparison study of extrapolation models and empirical relations in forecasting solar wind. Front. Astron. Space Sci 7: 572084. https://doi.org/10.3389/fspas.2020.572084. [CrossRef] [Google Scholar]
- Li S. 2005. An HLLC Riemann solver for magneto-hydrodynamics. J Comput Phys 203(1): 344–357. https://doi.org/10.1016/j.jcp.2004.08.020. [CrossRef] [Google Scholar]
- Linker JA, Caplan RM, Downs C, Riley P, Mikic Z, et al. 2017. The open flux problem. Astrophys J 848(1): 70.https://doi.org/10.3847/1538-4357/aa8a70. [CrossRef] [Google Scholar]
- Linker JA, Caplan RM, Downs CD, Lionello R, Riley P, Mikic Z, Henney CJ, Arge CN, Kim T, Pogorelov N. 2016. An empirically driven time-dependent model of the solar wind. J Phys Conf Ser 719(1): 012012. https://doi.org.10.1088/1742-6596/719/1/012012. [CrossRef] [Google Scholar]
- Mayank P, Vaidya B, Chakrabarty D. 2022. SWASTi-SW: space weather adaptive simulation framework for solar wind and its relevance to the Aditya-L1 mission. Astrophys J Suppl Ser 262(1): 23. https://doi.org/10.3847/1538-4365/ac8551. [CrossRef] [Google Scholar]
- Mayank P, Vaidya B, Mishra W, Chakrabarty D. 2024. SWASTi-CME: a physics-based model to study coronal mass ejection evolution and its interaction with solar wind. Astrophys J Suppl 270(1): 10. https://doi.org/10.3847/1538-4365/ad08c7. [CrossRef] [Google Scholar]
- Mignone A, Bodo G, Massaglia S, Matsakos T, Tesileanu O, Zanni C, Ferrari A. 2007. PLUTO: a numerical code for computational astrophysics. Astrophys J Suppl Ser 170(1): 228–242. https://doi.org/10.1086/513316. [CrossRef] [Google Scholar]
- Mikić Z, Linker JA. 1996. The large-scale structure of the solar corona and inner heliosphere. In: Proceedings of the eigth International solar wind conference: solar wind eight, vol. 382 of American Institute of Physics Conference Series, Winterhalter D, Gosling JT, Habbal SR, Kurth WS, Neugebauer M, (Eds.), AIP Press, Woodbury, NY. pp. 104–107. https://doi.org/10.1063/1.51370. [Google Scholar]
- Mikić Z, Linker JA, Schnack DD, Lionello R, Tarditi A. 1999. Magnetohydrodynamic modeling of the global solar corona. Phys Plasmas 6(5): 2217–2224. https://doi.org/10.1063/1.873474. [CrossRef] [Google Scholar]
- Narechania NM, Nikolić L, Freret L, De Sterck H, Groth CPT. 2021. An integrated data-driven solar wind – CME numerical framework for space weather forecasting. J. Space Weather Space Clim 11: 8. https://doi.org/10.1051/swsc/2020068. [CrossRef] [EDP Sciences] [Google Scholar]
- Odstrcil D. 2003. Modeling 3-D solar wind structure. Adv Space Res 32(4): 497–506. https://doi.org/10.1016/S0273-1177(03)00332-6. [CrossRef] [Google Scholar]
- Owens MJ. 2018. Time-window approaches to space-weather forecast metrics: a solar wind case study. Space Weather 16(11): 1847–1861. https://doi.org/10.1029/2018SW002059. [CrossRef] [Google Scholar]
- Owens MJ, Nichols JD. 2021. Using in situ solar-wind observations to generate inner-boundary conditions to outer-heliosphere simulations – I. Dynamic time warping applied to synthetic observations. Mon Not R Astron Soc 508(2): 2575–2582. https://doi.org/10.1093/mnras/stab2512. [CrossRef] [Google Scholar]
- Owens MJ, Riley P, Horbury TS. 2017. Probabilistic solar wind and geomagnetic forecasting using an analogue ensemble or “similar day” approach. Solar Phys. 292(5): 69. https://doi.org/10.1007/s11207-017-1090-7. [CrossRef] [Google Scholar]
- Pomoell J, Poedts S. 2018. EUHFORIA: European heliospheric forecasting information asset. J. Space Weather Space Clim. 8: A35. https://doi.org/10.1051/swsc/2018020. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Powell KG. 1997. An approximate Riemann solver for magnetohydrodynamics. In: Upwind and high-resolution schemes. Hussaini MY, van Leer B, Van Rosendale J, (Eds.), Springer, Berlin, Heidelberg. pp. 570–583 ISBN 978-3-642-60543-7. https://doi.org/10.1007/978-3-642-60543-7_23. [CrossRef] [Google Scholar]
- Reiss MA, MacNeice PJ, Muglach K, Arge CN, Möstl C, et al. 2020. Forecasting the ambient solar wind with numerical models. II. An adaptive prediction system for specifying solar wind speed near the Sun. Astrophys J 891(2): 165. https://doi.org/10.3847/1538-4357/ab78a0. [CrossRef] [Google Scholar]
- Reiss MA, Muglach K, Mullinix R, Kuznetsova MM, Wiegand C, et al. 2022. Unifying the validation of ambient solar wind models. Adv Space Res 72(12): 5275–5286. https://doi.org/10.1016/j.asr.2022.05.026. [Google Scholar]
- Reiss MA, Temmer M, Veronig AM, Nikolic L, Vennerstrom S, Schöngassner F, Hofmeister SJ. 2016. Verification of high-speed solar wind stream forecasts using operational solar wind models. Space Weather 14(7): 495–510. https://doi.org/10.1002/2016SW001390. [NASA ADS] [CrossRef] [Google Scholar]
- Riley P, Ben-Nun M. 2022. sunRunner1D: A tool for exploring icme evolution through the inner heliosphere. Universe 8(9): 447. https://doi.org/10.3390/universe8090447. [CrossRef] [Google Scholar]
- Riley P, Ben-Nun M, Linker JA, Owens MJ, Horbury TS. 2017. Forecasting the properties of the solar wind using simple pattern recognition. Space Weather 15(3): 526–540. https://doi.org/10.1002/2016SW001589. [CrossRef] [Google Scholar]
- Riley P, Linker JA, Arge CN. 2015. On the role played by magnetic expansion factor in the prediction of solar wind speed. Space Weather 13(3): 154–169. https://doi.org/10.1002/2014SW001144. [NASA ADS] [CrossRef] [Google Scholar]
- Riley P, Linker JA, Lionello R, Mikic Z. 2012. Corotating interaction regions during the recent solar minimum: The power and limitations of global MHD modeling. J Atmos Sol-Terr Phys 83: 1–10. https://doi.org/10.1016/j.jastp.2011.12.013. [CrossRef] [Google Scholar]
- Riley P, Linker JA, Mikic Z. 2001. An empirically-driven global MHD model of the solar corona and inner heliosphere. J Geophys Res Space Phys 106(A8): 5889–15901. https://doi.org/10.1029/2000JA000121. [Google Scholar]
- Riley P, Linker JA, Mikic Z. 2013. On the application of ensemble modeling techniques to improve ambient solar wind models. J Geophys Res Space Phys 118(2): 600–607. https://doi.org/10.1002/jgra.50156. [CrossRef] [Google Scholar]
- Riley P, Lionello R, Caplan RM, Downs C, Linker JA, Badman ST, Stevens ML. 2021. Using Parker Solar Probe observations during the first four perihelia to constrain global magnetohydrodynamic models. A&A 650: A19. https://doi.org/10.1051/0004-6361/202039815. [CrossRef] [EDP Sciences] [Google Scholar]
- Samara E, Laperre B, Kieokaew R, Temmer M, Verbeke C, Rodriguez L, Magdalenic J, Poedts S. 2022. Dynamic time warping as a means of assessing solar wind time series. Astrophys J 927(2): 187. https://doi.org/10.3847/1538-4357/ac4af6. [CrossRef] [Google Scholar]
- Schrijver CJ, Kauristie K, Aylward AD, Denardini SE, Gibson CM, Glover A, et al. 2015. Understanding space weather to shield society: A global road map for 2015–2025 commissioned by COSPAR and ILWS. Adv Space Res 55(12): 2745–2807. https://doi.org/10.1016/j.asr.2015.03.023. [CrossRef] [Google Scholar]
- Shiota D, Kataoka R, Miyoshi Y, Hara T, Tao C, Masunaga K, Futaana Y, Terada N. 2014. Inner heliosphere MHD modeling system applicable to space weather forecasting for the other planets. space weather 12(4): 187–204. https://doi.org/10.1002/2013SW000989. [CrossRef] [Google Scholar]
- Stansby D, Riley P. 2022. PsiPy. Available at https://github.com/predsci/PsiPy. [Google Scholar]
- Taylor KE. 2001. Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos 106(D7): 7183–7192. https://doi.org/10.1029/2000JD900719. [CrossRef] [Google Scholar]
- Tóth G, Sokolov IV, Gombosi TI, Chesney DR, Clauer CR, et al. 2005. Space weather modeling framework: A new tool for the space science community. J Geophys Res Space Phys 110(A12): A11126. https://doi.org/10.1029/2005JA011126. [Google Scholar]
- Zhang B, Sorathia KA, Lyon JG, Merkin VG, Wiltberger M. 2019. Conservative averaging-reconstruction techniques (ring average) for 3-D finite-volume MHD solvers with axis singularity. J Comput Phys 376: 276–294. https://doi.org/10.1016/j.jcp.2018.08.020. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.