Open Access
Issue |
J. Space Weather Space Clim.
Volume 14, 2024
|
|
---|---|---|
Article Number | 25 | |
Number of page(s) | 16 | |
DOI | https://doi.org/10.1051/swsc/2024021 | |
Published online | 09 September 2024 |
- Albert J. 2007. Simple approximations of quasi-linear diffusion coefficients. J Geophys Res Space Phys 112(A12): A12202. https://doi.org/10.1029/2007JA012551. [CrossRef] [Google Scholar]
- Albert J. 2008. Efficient approximations of quasi-linear diffusion coefficients in the radiation belts. J Geophys Res Space Phys 113(A6): A06208. https://doi.org/10.1029/2007JA012936. [CrossRef] [Google Scholar]
- Allison HJ, Horne RB, Glauert SA, Del Zanna G. 2019. On the importance of gradients in the low-energy electron phase space density for relativistic electron acceleration. J Geophys Res Space Phys 124(4): 2628–2642. https://doi.org/10.1029/2019JA026516. [CrossRef] [Google Scholar]
- Anderson B, Millan R, Reeves G, Friedel R. 2015. Acceleration and loss of relativistic electrons during small geomagnetic storms. Geophys Res Lett 42(23): 10–113. https://doi.org/10.1002/2015GL066376. [Google Scholar]
- Baker D, Blake J, Gorney D, Higbie P, Klebesadel R, King J. 1987. Highly relativistic magnetospheric electrons: A role in coupling to the middle atmosphere? Geophys Res Lett 14(10): 1027–1030. https://doi.org/10.1029/GL014i010p01027. [CrossRef] [Google Scholar]
- Baker D, McPherron R, Cayton T, Klebesadel R. 1990. Linear prediction filter analysis of relativistic electron properties at 6.6 RE. J Geophys Res Space Phys 95(A9): 15133–15140. https://doi.org/10.1029/JA095iA09p15133. [CrossRef] [Google Scholar]
- Balikhin M, Rodriguez J, Boynton R, Walker S, Aryan H, Sibeck D, Billings S. 2016. Comparative analysis of NOAA REFM and SNB3GEO tools for the forecast of the fluxes of high-energy electrons at GEO. Space Weather 14(1): 22–31. https://doi.org/10.1002/2015SW001303. [CrossRef] [Google Scholar]
- Balikhin MA, Boynton RJ, Walker SN, Borovsky JE, Billings SA, Wei H-L. 2011. Using the NARMAX approach to model the evolution of energetic electrons fluxes at geostationary orbit. Geophys Res Lett 38(18): L18105. https://doi.org/10.1029/2011gl048980. [Google Scholar]
- Beutier T, Boscher D. 1995. A three-dimensional analysis of the electron radiation belt by the Salammbô code. J Geophys Res Space Phys 100(A8): 14853–14861. https://doi.org/10.1029/94JA03066. [CrossRef] [Google Scholar]
- Bourdarie S, Maget V. 2012. Electron radiation belt data assimilation with an ensemble Kalman filter relying on the Salammbô code. Ann Geophys 30: 929–943. https://doi.org/10.5194/angeo-30-929-2012. [CrossRef] [Google Scholar]
- Boynton R, Balikhin M, Billings S. 2015. Online NARMAX model for electron fluxes at GEO. Ann Geophys 33: 405–411. https://doi.org/10.5194/ANGEO-33-405-2015. [CrossRef] [Google Scholar]
- Boynton R, Balikhin M, Billings S, Reeves G, Ganushkina N, Gedalin M, Amariutei O, Borovsky J, Walker S. 2013. The analysis of electron fluxes at geosynchronous orbit employing a NARMAX approach. J Geophys Res Space Phys 118(4): 1500–1513. https://doi.org/10.1002/jgra.50192. [CrossRef] [Google Scholar]
- Brautigam D, Albert J. 2000. Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm. J Geophys Res Space Phys 105(A1): 291–309. https://doi.org/10.1029/1999JA900344. [CrossRef] [Google Scholar]
- Burin des RoziersE, Li X. 2006. Specification of >2 MeV geosynchronous electrons based on solar wind measurements. Space Weather 4(6): S6007. https://doi.org/10.1029/2005SW000177. [CrossRef] [Google Scholar]
- Cai M, Liu J. 2016. Maxout neurons for deep convolutional and LSTM neural networks in speech recognition. Speech Commun 77: 53–64. https://doi.org/10.1016/j.specom.2015.12.003. [CrossRef] [Google Scholar]
- Devlin J, Chang M-W, Lee K, Toutanova K. 2018. BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint. https://doi.org/10.48550/arXiv.1810.04805. [Google Scholar]
- Dong L, Xu S, Xu B. 2018. Speech-transformer: a no-recurrence sequence-to-sequence model for speech recognition. In: 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP), Calgary, AB, Canada, IEEE, pp. 5884–5888. https://doi.org/10.1109/ICASSP.2018.8462506. [Google Scholar]
- Drozdov A, Shprits YY, Usanova M, Aseev N, Kellerman A, Zhu H. 2017. EMIC wave parameterization in the long-term VERB code simulation. J Geophys Res Space Phys 122(8): 8488–8501. https://doi.org/10.1002/2017ja024389. [CrossRef] [Google Scholar]
- Drozdov AY, Allison HJ, Shprits YY, Elkington SR, Aseev NA. 2021. A comparison of radial diffusion coefficients in 1-D and 3-D long-term radiation belt simulations. J Geophys Res Space Phys 126(8): e2020JA028707. https://doi.org/10.1029/2020JA028707. [CrossRef] [Google Scholar]
- Friedel R, Reeves G, Obara T. 2002. Relativistic electron dynamics in the inner magnetosphere – a review. J Atmos Sol-Terr Phys 64(2): 265–282. https://doi.org/10.1016/S1364-6826(01)00088-8. [CrossRef] [Google Scholar]
- Fukata M, Taguchi S, Okuzawa T, Obara T. 2002. Neural network prediction of relativistic electrons at geosynchronous orbit during the storm recovery phase: effects of recurring substorms. Ann Geophys 20: 947–951. https://doi.org/10.5194/angeo-20-947-2002. [CrossRef] [Google Scholar]
- Ganushkina NY, Amariutei O, Welling D, Heynderickx D. 2015. Nowcast model for low-energy electrons in the inner magnetosphere. Space Weather 13(1): 16–34. https://doi.org/10.1002/2014sw001098. [CrossRef] [Google Scholar]
- Ganushkina NY, Liemohn M, Amariutei O, Pitchford D. 2014. Low-energy electrons (5–50 keV) in the inner magnetosphere. J Geophys Res Space Phys 119(1): 246–259. https://doi.org/10.1002/2013ja019304. [CrossRef] [Google Scholar]
- Gers FA, Schmidhuber J, Cummins F. 2000. Learning to forget: Continual prediction with LSTM. Neural Comput 12(10): 2451–2471. https://doi.org/10.1049/cp:19991218. [CrossRef] [Google Scholar]
- Glauert SA, Horne RB, Meredith NP. 2014a. Simulating the Earth’s radiation belts: Internal acceleration and continuous losses to the magnetopause. J Geophys Res Space Phys 119(9): 7444–7463. https://doi.org/10.1002/2014JA020092. [CrossRef] [Google Scholar]
- Glauert SA, Horne RB, Meredith NP. 2014b. Three-dimensional electron radiation belt simulations using the BAS Radiation Belt Model with new diffusion models for chorus, plasmaspheric hiss, and lightning-generated whistlers. J Geophys Res Space Phys 119(1): 268–289. https://doi.org/10.1002/2013JA019281. [CrossRef] [Google Scholar]
- Graves A. 2012. Long short-term memory. In: Supervised sequence labelling with recurrent neural networks. Studies in computational intelligence, vol. 385. Springer, Berlin, Heidelberg, pp. 37–45. https://doi.org/10.1007/978-3-642-24797-2_4. [Google Scholar]
- Graves A, Schmidhuber J. 2005. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw 18(5–6): 602–610. https://doi.org/10.1016/j.neunet.2005.06.042. [CrossRef] [Google Scholar]
- Greff K, Srivastava RK, Koutník J, Steunebrink BR, Schmidhuber J. 2016. LSTM: a search space odyssey. IEEE Trans Neural Netw Learn Syst 28(10): 2222–2232. https://doi.org/10.1109/TNNLS.2016.2582924. [Google Scholar]
- Grubb R. 1975. The SMS/GOES space environment monitor subsystem. NASA STI/Recon Technical Report No, 76, 28260. Available at https://www.ngdc.noaa.gov/stp/satellite/goes/doc/ERL-SEL-42_SEM.pdf. [Google Scholar]
- Gubby R, Evans J. 2002. Space environment effects and satellite design. J Atmos Sol-Terr Phys 64(16): 1723–1733. https://doi.org/10.1016/S1364-6826(02)00122-0. [CrossRef] [Google Scholar]
- Guo C, Xue B, Lin Z. 2013. Approach for predicting the energetic electron flux in geosynchronous earth orbit. Chin J Space Sci 33(4): 418–426. https://doi.org/10.11728/cjss2013.04.418. [CrossRef] [Google Scholar]
- He T, Liu S, Shen H, Gong J. 2013. Quantitative prediction of relativistic electron flux at geosynchronous orbit with geomagnetic pulsations parameters. Chin J Space Sci 33(1): 20–27. https://doi.org/10.11728/cjss2013.01.020. [CrossRef] [Google Scholar]
- Hochreiter S, Schmidhuber J. 1997. Long short-term memory. Neural Comput 9(8): 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735. [Google Scholar]
- Horne R, Glauert S, Meredith N, Boscher D, Maget V, Heynderickx D, Pitchford D. 2013. Space weather impacts on satellites and forecasting the Earth’s electron radiation belts with SPACECAST. Space weather 11(4): 169–186. https://doi.org/10.1002/swe.20023. [CrossRef] [Google Scholar]
- Horne RB, Thorne RM. 1998. Potential waves for relativistic electron scattering and stochastic acceleration during magnetic storms. Geophys Res Lett 25(15): 3011–3014. https://doi.org/10.1029/98GL01002. [CrossRef] [Google Scholar]
- Horne RB, Thorne RM, Glauert SA, Albert JM, Meredith NP, Anderson RR. 2005. Timescale for radiation belt electron acceleration by whistler mode chorus waves. J Geophys Res Space Phys 110(A3): A03225. https://doi.org/10.1029/2004JA010811. [CrossRef] [Google Scholar]
- Huang Z, Xu W, Yu K. 2015. Bidirectional LSTM-CRF models for sequence tagging. arXiv preprint. https://doi.org/10.48550/arXiv.1508.01991. [Google Scholar]
- Kai Y, Lei J, Chen Y, Wei X. 2013. Deep learning: Yesterday, today, and tomorrow. J Comput Res Dev 50(9): 1799–1804 https://crad.ict.ac.cn/en/article/id/1340 . [Google Scholar]
- Katsavrias C, Aminalragia-Giamini S, Papadimitriou C, Daglis IA, Sandberg I, Jiggens P. 2022. Radiation belt model including semi-annual variation and solar driving (sentinel). Space Weather 20(1): e2021SW002936. https://doi.org/10.1029/2021SW002936. [CrossRef] [Google Scholar]
- Kersten T, Horne RB, Glauert SA, Meredith NP, Fraser BJ, Grew RS. 2014. Electron losses from the radiation belts caused by EMIC waves. J Geophys Res Space Phys 119(11): 8820–8837. https://doi.org/10.1002/2014JA020366. [CrossRef] [Google Scholar]
- Kim K-C, Shprits Y, Subbotin D, Ni B. 2011. Understanding the dynamic evolution of the relativistic electron slot region including radial and pitch angle diffusion. J Geophys Res Space Phys 116(A10): A10214. https://doi.org/10.1029/2011JA016684. [Google Scholar]
- Kim K-C, Shprits Y, Subbotin D, Ni B. 2012. Relativistic radiation belt electron responses to GEM magnetic storms: Comparison of CRRES observations with 3-D VERB simulations. J Geophys Res Space Phys 117(A8): A08221. https://doi.org/10.1029/2011JA017460. [Google Scholar]
- Kingma DP, Ba J. 2014. Adam: A method for stochastic optimization. arXiv preprint. https://doi.org/10.48550/arXiv.1412.6980. [Google Scholar]
- Kondrashov D, Denton R, Shprits Y, Singer H. 2014. Reconstruction of gaps in the past history of solar wind parameters. Geophys Res Lett 41(8): 2702–2707. https://doi.org/10.1002/2014GL059741. [CrossRef] [Google Scholar]
- Kondrashov D, Feliks Y, Ghil M. 2005. Oscillatory modes of extended Nile River records (AD 622–1922). Geophys Res Lett 32(10): L10702. https://doi.org/10.1029/2004GL022156. [CrossRef] [Google Scholar]
- Kondrashov D, Ghil M. 2006. Spatio-temporal filling of missing points in geophysical data sets. Nonlinear Proc Geophys 13(2): 151–159. https://doi.org/10.5194/npg-13-151-2006. [CrossRef] [Google Scholar]
- Kondrashov D, Ghil M, Shprits Y. 2011. Lognormal Kalman filter for assimilating phase space density data in the radiation belts. Space Weather 9(11): S11006. https://doi.org/10.1029/2011SW000726. [CrossRef] [Google Scholar]
- Kondrashov D, Shprits Y, Ghil M. 2010. Gap filling of solar wind data by singular spectrum analysis. Geophys Res Lett 37(15): L15101. https://doi.org/10.1029/2010GL044138. [CrossRef] [Google Scholar]
- Lai ST, Cahoy K, Lohmeyer W, Carlton A, Aniceto R, Minow J. 2018. Deep dielectric charging and spacecraft anomalies. In: Extreme events in geospace, Elsevier, 2018, pp. 419–432. https://doi.org/10.1016/b978-0-12-812700-1.00016-9. [Google Scholar]
- Landis D, Saikin A, Zhelavskaya I, Drozdov A, Aseev N, Shprits Y, Pfitzer M, Smirnov A. 2022. NARX neural network derivations of the outer boundary radiation belt electron flux. Space Weather 20(5): e2021SW002774. https://doi.org/10.1029/2020SW002524. [CrossRef] [Google Scholar]
- Lanzerotti L, Breglia C, Maurer D, Johnson III G, Maclennan C. 1998. Studies of spacecraft charging on a geosynchronous telecommunications satellite. Adv Space Res 22(1): 79–82. https://doi.org/10.1016/S0273-1177(97)01104-6. [CrossRef] [Google Scholar]
- Li S, Huang W, Liu S, Zhong Q. 2017. Dynamic prediction model of relativistic electron differential fluxes at the geosynchronous orbit. Chin J Space Sci 37(3): 298–311.https://doi.org/10.11728/cjss2017.03.298. [CrossRef] [Google Scholar]
- Li W, Ma Q, Thorne R, Bortnik J, Zhang X-J, et al. 2016. Radiation belt electron acceleration during the 17 March 2015 geomagnetic storm: Observations and simulations. J Geophys Res Space Phys 121(6): 5520–5536. https://doi.org/10.1002/2016JA022400. [CrossRef] [Google Scholar]
- Li W, Shprits Y, Thorne R. 2007. Dynamic evolution of energetic outer zone electrons due to waveparticle interactions during storms. J Geophys Res Space Phys 112(A10): A10220. https://doi.org/10.1029/2007JA012368. [Google Scholar]
- Li X. 2004. Variations of 0.7–6.0 MeV electrons at geosynchronous orbit as a function of solar wind. Space Weather 2(3): S03006. https://doi.org/10.1029/2003sw000017. [Google Scholar]
- Li X, Baker D, O’Brien T, Xie L, Zong Q. 2006. Correlation between the inner edge of outer radiation belt electrons and the innermost plasmapause location. Geophys Res Lett 33(14): L14107. https://doi.org/10.1029/2006GL026294. [Google Scholar]
- Li X, Temerin M, Baker D, Reeves G. 2011. Behavior of MeV electrons at geosynchronous orbit during last two solar cycles. J Geophys Res Space Phys 116(A11): A11207. https://doi.org/10.1029/2011JA016934. [Google Scholar]
- Li X, Temerin M, Baker D, Reeves G, Larson D. 2001. Quantitative prediction of radiation belt electrons at geostationary orbit based on solar wind measurements. Geophys Res Lett 28(9): 1887–1890. https://doi.org/10.1029/2000GL012681. [CrossRef] [Google Scholar]
- Lin R, Zhang X, Liu S, Wang Y, Gong J. 2010. A three-dimensional asymmetric magnetopause model. J Geophys Res Space Phys 115(A4): A04207. https://doi.org/10.1029/2009JA014235. [Google Scholar]
- Ling A, Ginet G, Hilmer R, Perry K. 2010. A neural network-based geosynchronous relativistic electron flux forecasting model. Space Weather 8(9): S09003. https://doi.org/10.1029/2010sw000576. [Google Scholar]
- Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo B. 2021. Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, Canada, IEEE, 10012–10022. https://doi.org/10.48550/arXiv.2103.14030. [Google Scholar]
- Lohmeyer W, Carlton A, Wong F, Bodeau M, Kennedy A, Cahoy K. 2015. Response of geostationary communications satellite solid-state power amplifiers to high-energy electron fluence. Space Weather 13(5): 298–315. https://doi.org/10.1002/2014SW001147. [CrossRef] [Google Scholar]
- Lucci N, Levitin A, Belov A, Eroshenko E, Ptitsyna N, et al. 2005. Space weather conditions and spacecraft anomalies in different orbits. Space Weather 3(1): 01001. https://doi.org/10.1029/2003SW000056. [Google Scholar]
- Ma Q, Li W, Bortnik J, Thorne R, Chu X, et al. 2018. Quantitative evaluation of radial diffusion and local acceleration processes during GEM challenge events. J Geophys Res Space Phys 123(3): 1938–1952. https://doi.org/10.1002/2017JA025114. [CrossRef] [Google Scholar]
- Macmillan S, Finlay C. 2010. The international geomagnetic reference field. In: Geomagnetic observations and models, Mandea M, Korte M(Eds.), Geomagnetic observations and models. IAGA Special Sopron Book Series, vol. 5, Springer. pp. 265–276. https://doi.org/10.1007/978-90-481-9858-0_10. [Google Scholar]
- Maget V, Bourdarie S, Boscher D, Friedel R. 2007. Data assimilation of LANL satellite data into the Salammbô electron code over a complete solar cycle by direct insertion. Space Weather 5(10): S10003. https://doi.org/10.1029/2007SW000322. [CrossRef] [Google Scholar]
- Meredith NP, Horne RB, Iles RH, Thorne RM, Heynderickx D, Anderson RR. 2002. Outer zone relativistic electron acceleration associated with substorm-enhanced whistler mode chorus. J Geophys Res Space Phys 107(A7): 1144. https://doi.org/10.1029/2001JA900146. [CrossRef] [Google Scholar]
- Millan R, Thorne R. 2007. Review of radiation belt relativistic electron losses. J Atmos Sol-Terr Phys 69(3): 362–377. https://doi.org/10.1016/j.jastp.2006.06.019. [CrossRef] [Google Scholar]
- Miyoshi Y, Morioka A, Misawa H, Obara T, Nagai T, Kasahara Y. 2003. Rebuilding process of the outer radiation belt during the 3 November 1993 magnetic storm: NOAA and Exos-D observations. J Geophys Res Space Phys 108(A1): 1004. https://doi.org/10.1029/2001JA007542. [CrossRef] [Google Scholar]
- O’Brien T, Sornette D, McPherron R. 2001. Statistical asynchronous regression: Determining the relationship between two quantities that are not measured simultaneously. J Geophys Res Space Phys 106(A7): 13247–13259. https://doi.org/10.1029/2000JA900193. [CrossRef] [Google Scholar]
- Pakhotin I, Drozdov A, Shprits Y, Boynton R, Subbotin D, Balikhin M. 2014. Simulation of highenergy radiation belt electron fluxes using NARMAX-VERB coupled codes. J Geophys Res Space Phys 119(10): 8073–8086. https://doi.org/10.1002/2014JA020238. [CrossRef] [Google Scholar]
- Paulikas G, Blake J. 1979. Effects of the solar wind on magnetospheric dynamics: Energetic electrons at the synchronous orbit. Quantitative modeling of magnetospheric processes 21: 180–202. https://doi.org/10.1029/GM021p0180. [Google Scholar]
- Pilipenko V, Yagova N, Romanova N, Allen J. 2006. Statistical relationships between satellite anomalies at geostationary orbit and high-energy particles. Adv Space Res 37(6): 1192–1205. https://doi.org/10.1016/j.asr.2005.03.152. [CrossRef] [Google Scholar]
- Potapov A, Tsegmed B, Ryzhakova L. 2014. Solar cycle variation of “killer” electrons at geosynchronous orbit and electron flux correlation with the solar wind parameters and ULF waves intensity. Acta Astronaut 93: 55–63. https://doi.org/10.1016/j.actaastro.2013.07.004. [CrossRef] [Google Scholar]
- Qian Y, Yang J, Zhang H, Shen C, Wu Y. 2020. An hourly prediction model of relativistic electrons based on empirical mode decomposition. Space Weather 18(8): e2018SW0022078. https://doi.org/10.1029/2018SW002078. [CrossRef] [Google Scholar]
- Qin Z, Denton R, Tsyganenko N, Wolf S. 2007. Solar wind parameters for magnetospheric magnetic field modeling. Space Weather 5(11). https://doi.org/10.1029/2006SW000296. [Google Scholar]
- Reagan J, Meyerott R, Gaines E, Nightingale R, Filbert P, Imhof W. 1983. Space charging currents and their effects on spacecraft systems. IEEE Trans Electr Insul 18(3): 354–365. https://doi.org/10.1109/TEI.1983.298625. [CrossRef] [Google Scholar]
- Reeves GD, Chen Y, Cunningham G, Friedel R, Henderson MG, Jordanova V, Koller J, Morley S, Thomsen M, Zaharia S. 2012. Dynamic radiation environment assimilation model: DREAM. Space Weather 10(3): S03006. https://doi.org/10.1029/2011SW000729. [CrossRef] [Google Scholar]
- Reeves GD, Morley SK, Friedel RH, Henderson MG, Cayton TE, Cunningham G, Blake JB, Christensen RA, Thomsen D. 2011. On the relationship between relativistic electron flux and solar wind velocity: Paulikas and Blake revisited. J Geophys Res Space Phys 116(A2): A02213. https://doi.org/10.1029/2010JA015735. [Google Scholar]
- Rigler E, Baker D, Weigel R, Vassiliadis D, Klimas A. 2004. Adaptive linear prediction of radiation belt electrons using the Kalman filter. Space Weather 2(3): S03003. https://doi.org/10.1029/2003SW000036. [CrossRef] [Google Scholar]
- Romanova N, Pilipenko V, Yagova N, Belov A. 2005. Statistical correlation of the rate of failures on geosynchronous satellites with fluxes of energetic electrons and protons. Cosm Res 43: 179–185. https://doi.org/10.1007/s10604-005-0032-6. [CrossRef] [Google Scholar]
- Ryden KA, Morris PA, Ford KA, Hands AD, Dyer CS, et al. 2008. Observations of internal charging currents in medium earth orbit. IEEE Trans Plasma Sci 36(5): 2473–2481. https://doi.org/10.1109/TPS.2008.2001945. [CrossRef] [Google Scholar]
- Saikin A, Shprits YY, Drozdov A, Landis DA, Zhelavskaya I, Cervantes S. 2021. Reconstruction of the radiation belts for solar cycles 17–24 (1933–2017). Space Weather 19(3): e2020SW002524. https://doi.org/10.1029/2020SW002524. [CrossRef] [Google Scholar]
- Sakaguchi K, Miyoshi Y, Saito S, Nagatsuma T, Seki K, Murata K. 2013. Relativistic electron flux forecast at geostationary orbit using Kalman filter based on multivariate autoregressive model. Space Weather 11(2): 79–89. https://doi.org/10.1002/swe.20020. [CrossRef] [Google Scholar]
- Shin D-K, Lee D-Y, Kim K-C, Hwang J, Kim J. 2016. Artificial neural network prediction model for geosynchronous electron fluxes: Dependence on satellite position and particle energy. Space Weather 14(4): 313–321. https://doi.org/10.1002/2015SW001359. [CrossRef] [Google Scholar]
- Shprits Y, Daae M, Ni B. 2012. Statistical analysis of phase space density buildups and dropouts. J Geophys Res Space Phys 117(A1): A01219. https://doi.org/10.1029/2011JA016939. [Google Scholar]
- Shprits Y, Kellerman A, Kondrashov D, Subbotin D. 2013. Application of a new data operator-splitting data assimilation technique to the 3-D VERB diffusion code and CRRES measurements. Geophys Res Lett 40(19): 4998–5002. https://doi.org/10.1002/grl.50969. [CrossRef] [Google Scholar]
- Shprits Y, Thorne R, Horne R, Glauert S, Cartwright M, Russell C, Baker D, Kanekal S. 2006a. Acceleration mechanism responsible for the formation of the new radiation belt during the 2003 Halloween solar storm. Geophys Res Lett 33(5): L05104. https://doi.org/10.1029/2005GL024256. [CrossRef] [Google Scholar]
- Shprits YY, Allison HJ, Wang D, Drozdov A, Szabo-Roberts M, Zhelavskaya I, Vasile R. 2022. A new population of ultra-relativistic electrons in the outer radiation zone. J Geophys Res Space Phys 127(5): e2021JA030214. https://doi.org/10.1029/2021JA030214. [CrossRef] [Google Scholar]
- Shprits YY, Elkington SR, Meredith NP, Subbotin DA. 2008a. Review of modeling of losses and sources of relativistic electrons in the outer radiation belt I: Radial transport. J Atmos Sol-Terr Phys 70(14): 1679–1693. https://doi.org/10.1016/j.jastp.2008.06.008. [CrossRef] [Google Scholar]
- Shprits YY, Horne RB, Kellerman AC, Drozdov AY. 2018. The dynamics of Van Allen belts revisited. Nat Phys 14(2): 102–103. https://doi.org/10.1038/nphys4350. [CrossRef] [Google Scholar]
- Shprits YY, Kellerman AC, Drozdov AY, Spence HE, Reeves GD, Baker DN. 2015. Combined convective and diffusive simulations: VERB-4D comparison with 17 March 2013 Van Allen Probes observations. Geophys Res Lett 42(22): 9600–9608. https://doi.org/10.1002/2015GL065230. [CrossRef] [Google Scholar]
- Shprits YY, Subbotin D, Ni B. 2009. Evolution of electron fluxes in the outer radiation belt computed with the VERB code. J Geophys Res Space Phys 114(A11): A11209. https://doi.org/10.1029/2008ja013784. [Google Scholar]
- Shprits YY, Subbotin DA, Meredith NP, Elkington SR. 2008b. Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: Local acceleration and loss. J Atmos Sol-Terr Phys 70(14): 1694–1713. https://doi.org/10.1016/j.jastp.2008.06.014. [CrossRef] [Google Scholar]
- Shprits YY, Thorne RM, Horne RB, Summers D. 2006b. Bounce-averaged diffusion coefficients for field-aligned chorus waves. J Geophys Res Space Phys 111(A10): A10225. https://doi.org/10.1029/2006ja011725. [Google Scholar]
- Singh J, Omale SO, Inumoh LO, Ale F. 2021. Impact of radiation pressure and circumstellar dust on motion of a test particle in Manev’s field. Astrodynamics 5: 77–89. https://doi.org/10.1007/s42064-020-0071-z. [CrossRef] [Google Scholar]
- Son J, Moon Y-J, Shin S. 2022. 72-hour time series forecasting of hourly relativistic electron fluxes at geostationary orbit by deep learning. Space Weather 20(10): e2022SW003153. https://doi.org/10.1029/2022SW003153. [CrossRef] [Google Scholar]
- Subbotin D, Shprits Y. 2009. Three-dimensional modeling of the radiation belts using the Versatile Electron Radiation Belt (VERB) code. Space Weather 7(10): S10001. https://doi.org/10.1029/2008SW000452. [CrossRef] [Google Scholar]
- Subbotin D, Shprits Y, Ni B. 2010. Three-dimensional VERB radiation belt simulations including mixed diffusion. J Geophys Res Space Phys 115(A3): A03205. https://doi.org/10.1029/2009JA015070. [CrossRef] [Google Scholar]
- Subbotin D, Shprits Y, Ni B. 2011. Long-term radiation belt simulation with the VERB 3-D code: comparison with CRRES observations. J Geophys Res Space Phys 116(A12): A12210. https://doi.org/10.1029/2011JA017019. [CrossRef] [Google Scholar]
- Summers D, Thorne RM, Xiao F. 1998. Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere. J Geophys Res Space Phys 103(A9): 20487–20500. https://doi.org/10.1029/98JA01740. [CrossRef] [Google Scholar]
- Sun X, Lin R, Liu S, He X, Shi L, Luo B, Zhong Q, Gong J. 2021. Modeling the relationship of 2 MeV electron fluxes at different longitudes in geostationary orbit by the machine learning method. Remote Sens 13(17): 3347–. https://doi.org/10.3390/rs13173347. [CrossRef] [Google Scholar]
- Sun X, Lin R, Liu S, Luo B, Shi L, Zhong Q, Luo X, Gong J, Li M. 2023. Prediction models of 2 MeV electron daily fluences for 3 days at GEO orbit using a long short-term memory network. Remote Sens 15(10): 2538. https://doi.org/10.3390/rs15102538. [CrossRef] [Google Scholar]
- Thébault E, Finlay CC, Beggan CD, Alken P, Aubert J, et al. 2015. International geomagnetic reference field: the 12th generation. Earth Planet Space 67: 1–19. https://doi.org/10.1186/s40623-015-0228-9. [CrossRef] [Google Scholar]
- Tsyganenko N, Sitnov M. 2005. Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms. J Geophys Res Space Phys 110(A3): A03208. https://doi.org/10.1029/2004JA010798. [CrossRef] [Google Scholar]
- Tsyganenko NA. 1989. A magnetospheric magnetic field model with a warped tail current sheet. Planet Space Sci 37(1): 5–20. https://doi.org/10.1016/0032-0633(89)90066-4. [CrossRef] [Google Scholar]
- Tu W, Cunningham G, Chen Y, Henderson M, Camporeale E, Reeves G. 2013. Modeling radiation belt electron dynamics during GEM challenge intervals with the DREAM3D diffusion model. J Geophys Res Space Phys 118(10): 6197–6211. https://doi.org/10.1002/jgra.50560. [CrossRef] [Google Scholar]
- Turner DL, Li X. 2008. Quantitative forecast of relativistic electron flux at geosynchronous orbit based on low-energy electron flux. Space Weather 6(5): 05005. https://doi.org/10.1029/2007SW000354. [CrossRef] [Google Scholar]
- Ukhorskiy A, Sitnov M, Sharma A, Anderson B, Ohtani S, Lui A. 2004. Data-derived forecasting model for relativistic electron intensity at geosynchronous orbit. Geophys Res Lett 31(9): L09806. https://doi.org/10.1029/2004GL019616. [Google Scholar]
- Varotsou A, Boscher D, Bourdarie S, Horne RB, Glauert SA, Meredith NP. 2005. Simulation of the outer radiation belt electrons near geosynchronous orbit including both radial diffusion and resonant interaction with Whistler-mode chorus waves. Geophys Res Lett 32(19): L19106. https://doi.org/10.1029/2005GL023282. [CrossRef] [Google Scholar]
- Varotsou A, Boscher D, Bourdarie S, Horne RB, Meredith NP, Glauert SA, Friedel RH. 2008. Three-dimensional test simulations of the outer radiation belt electron dynamics including electron-chorus resonant interactions. J Geophys Res Space Phys 113(A12): A12212. https://doi.org/10.1029/2007JA012862. [CrossRef] [Google Scholar]
- Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. 2017. Attention is all you need. Advances in neural information processing systems 30. https://arxiv.org/abs/1706.03762. [Google Scholar]
- Violet M, Frederickson A. 1993. Spacecraft anomalies on the CRRES satellite correlated with the environment and insulator samples. IEEE Trans Nucl Sci 40(6): 1512–1520. https://doi.org/10.1109/23.273511. [CrossRef] [Google Scholar]
- Wang D, Shprits YY. 2019. On how high-latitude chorus waves tip the balance between acceleration and loss of relativistic electrons. Geophys Res Lett 46(14): 7945–7954. https://doi.org/10.1029/2019GL082681. [CrossRef] [Google Scholar]
- Wang D, Shprits YY, Zhelavskaya IS, Effenberger F, Castillo AM, Drozdov AY, Aseev NA, Cervantes S. 2020. The effect of plasma boundaries on the dynamic evolution of relativistic radiation belt electrons. J Geophys Res Space Phys 125(5): e2019JA027422. https://doi.org/10.1029/2019JA027422. [CrossRef] [Google Scholar]
- Wang R, Shi L. 2012. Study on the forecasting method of relativistic electron flux at geostationary orbit based on support vector machine. Chin J Space Sci 32(3): 354–361. https://doi.org/10.1007/s11783-011-0280-z. [CrossRef] [Google Scholar]
- Wei H-L, Billings S, Surjalal Sharma A, Wing S, Boynton R, Walker S. 2011. Forecasting relativistic electron flux using dynamic multiple regression models. Ann Geophys 29: 415–420. https://doi.org/10.5194/angeo-29-415-2011. [CrossRef] [Google Scholar]
- Wei L, Zhong Q, Lin R, Wang J, Liu S, Cao Y. 2018. Quantitative prediction of high-energy electron integral flux at geostationary orbit based on deep learning. Space Weather 16(7): 903–916. https://doi.org/10.1029/2018SW001829. [CrossRef] [Google Scholar]
- Wrenn G, Rodgers D, Ryden K. 2002. A solar cycle of spacecraft anomalies due to internal charging. Ann Geophys 20: 953–956. https://doi.org/10.5194/angeo-20-953-2002. [CrossRef] [Google Scholar]
- Wrenn G, Sims A. 1996. Internal charging in the outer zone and operational anomalies. Radiation belts: models and standards 97: 275–278. https://doi.org/10.1029/GM097P0275. [Google Scholar]
- Xue B, Ye Z. 2004. Forecast of the enhancement of relativistic electron at the geo-synchronous orbit. Chin J Space Sci 24(4): 283–288. https://doi.org/10.1007/BF02911033. [Google Scholar]
- Zeng A, Ju X, Yang L, Gao R, Zhu X, Dai B, Xu Q. 2022. Deciwatch: A simple baseline for 10× efficient 2D and 3D pose 53 estimation. In: European Conference on Computer Vision. ECCV 2022, Springer Nature Switzerland, Cham, Switzerland, pp. 607–624. [CrossRef] [Google Scholar]
- Zhang H, Fu S, Xie L, Zhao D, Yue C, et al. 2020. Relativistic electron flux prediction at geosynchronous orbit based on the neural network and the quantile regression method. Space Weather 18(9): e2020SW002445. https://doi.org/10.1029/2020SW002445. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.