Open Access
Issue |
J. Space Weather Space Clim.
Volume 14, 2024
|
|
---|---|---|
Article Number | 24 | |
Number of page(s) | 16 | |
DOI | https://doi.org/10.1051/swsc/2024023 | |
Published online | 30 August 2024 |
- Bremer J. 1992. Ionospheric trends in mid-latitudes as a possible indicator of the atmospheric greenhouse effect. J Atmos Terr Phys 54: 1505–1511. https://doi.org/10.1016/0021-9169(92)90157-G. [CrossRef] [Google Scholar]
- Bremer J, Damboldt T, Mielich J, Suessmann P. 2012. Comparing long-term trends in the ionospheric F2-region with two different methods. J Atmos Terr Phys 77: 174–185. https://doi.org/doi.org/10.1016/j.jastp.2011.12.017. [CrossRef] [Google Scholar]
- Cai Y, Yue X, Wang W, Zhang S, Liu L, Liu H, Wan W. 2019. Long-term trend of topside ionospheric electron density derived from DMSP data during 1995–2017. J Geophys Res Space Phys 124: 10708–10727. https://doi.org/10.1029/2019JA027522 [CrossRef] [Google Scholar]
- Cnossen I, Franzke C. 2014. The role of the Sun in long-term change in the F2 peak ionosphere: new insights from EEMD and numerical modelling. J Geophys Res Space Phys 119: 8610–8623. https://doi.org/10.1002/2014JA020048. [CrossRef] [Google Scholar]
- Cnossen I, Richmond AD. 2008. Modeling the effects of changes in the Earth’s magnetic field from 1957 to 1997 on the ionospheric hmF2 and fof2 parameters. J Atmos Sol Terr Phys 70: 1512–1524. https://doi.org/10.1016/j.jastp.2008.05.003. [CrossRef] [Google Scholar]
- Cnossen I, Richmond AD. 2013. Changes in the Earth’s magnetic field over the past century: effects on the ionosphere-thermosphere system and solar quiet (Sq) magnetic variation. J Geophys Res Space Phys 118: 849–858. https://doi.org/10.1029/2012JA018447. [CrossRef] [Google Scholar]
- Danilov AD, Konstantinova AV. 2013. Behavior of the ionospheric F2 layer parameters at the boundary of centuries (2013) Critical frequency. Geomagn Aeron 53: 345–355. https://doi.org/10.1134/S0016793213030043. [CrossRef] [Google Scholar]
- Danilov A. 2017. New results in studying foF2 trends. J Atmos Sol Terr Phys 163: 103–113. https://doi.org/10.1016/j.jastp.2017.04.002. [CrossRef] [Google Scholar]
- Elias AG, Zossi de Artigas M, De Haro Barbas BF. 2010. Trends in the solar quiet geomagnetic field variation linked to the Earth’s magnetic field secular variation and increasing concentrations of greenhouse gases. J Geophys Res 115: A08316. https://doi.org/10.1029/2009JA015136. [CrossRef] [Google Scholar]
- Emmert JT, Lean JL, Picone JM. 2010. Record-low thermospheric density during the 2008 solar minimum. Geophys Res Lett 37: L12102. https://doi.org/10.1029/2010/GL043671. [CrossRef] [Google Scholar]
- Emmert JT, Mannucci AJ, McDonald SE, Vergados P. 2017. Attribution of interminimum changes in global and hemispheric total electron content. J Geophys Res Space Phys 122: 2424–2439. https://doi.org/10.1002/2016JA023680. [CrossRef] [Google Scholar]
- Hall C, Rypdal K, Rypdal M. 2011. The E region at 69°N, 19°E: trends, significances, and detectability. J Geophys Res 116. https://doi.org/10.1029/2011JA016431 [CrossRef] [Google Scholar]
- Jakowski N, Bettac HD, Lazo B, Lois L. 1981. Seasonal variations of the columnar electron content of the ionosphere observed in Havana from July 1974 to April 1975. J Atmos Sol Terr Phys 43: 7–11. https://doi.org/doi.org/10.1016/0021-9169(81)90003-9. [CrossRef] [Google Scholar]
- Jakowski N, Paasch E. 1984. Report on the observations of the total electron content of the ionosphere in Neustrelitz/GDR from 1976 to 1980. Ann Geophys 2: 501–504. [Google Scholar]
- Jakowski N, Jungstand A, Lois L, Lazo B. 1991. Night-time enhancements of the F2-layer ionization over Havana. J Atmos Terr Phys 53: 1131–1138. https://doi.org/10.1016/0021-9169(91)90062-C. [CrossRef] [Google Scholar]
- Jakowski N, Förster M. 1995. About the nature of the Night-time Winter Anomaly effect (NWA) in the F-region of the ionosphere. Planet Space Sci 43: 603–612. https://doi.org/10.1016/0032-0633(94)00115-8. [CrossRef] [Google Scholar]
- Jakowski N, Hoque MM, Kriegel M, Patidar V. 2015. The persistence of the NWA effect during the low solar activity period 2007–2009. J Geophys Res Space Phys 120: 9148–9160. https://doi.org/10.1002/2015JA021600. [CrossRef] [Google Scholar]
- Jakowski N. 1996. TEC monitoring by using satellite positioning systems. In: Modern ionospheric science. Kohl H, Ruester R, Schlegel K, (Eds.) EGS, Katlenburg-Lindau, ProduServ GmbH Verlagsservice, Berlin. pp. 371–390. ISBN 3-9804862-1-4. [Google Scholar]
- Jakowski N, Mayer C, Missling KD, Becker C, Borries C, Daedelow H, Dubey S, Noack T, Tegler M, Wilken V. 2008. Space weather application center ionosphere – new capabilities for GNSS users. In: Proceedings of the Fifth European Space Weather Week, Brussels, Belgium, 17–21 November. [Google Scholar]
- Jakowski N, Mayer C, Hoque MM, Wilken V. 2011. Total electron content models and their use in ionosphere monitoring. Radio Sci. 46: RS0D18. https://doi.org/10.1029/2010RS004620. [CrossRef] [Google Scholar]
- Jakowski N, Hoque MM, Mielich J, Hall C. 2017. Equivalent slab thickness of the ionosphere over Europe as an indicator of long-term temperature changes in the thermosphere. J Atmos Sol Terr Phys 163, 2017: 91–102. https://doi.org/10.1016/j.jastp.2017.04.008. [CrossRef] [Google Scholar]
- Jakowski N, Hoque MM. 2018. A new electron density model of the plasmasphere for operational applications and services. J. Space Weather Space Clim 8: A16. https://doi.org/10.1051/swsc/2018002. [CrossRef] [EDP Sciences] [Google Scholar]
- Laštovička J, Mikhailov AV, Ulich T, Danilov AD. 2006. Long-term trends in foF2: A comparison of various methods. J Atmos Sol Terr Phys 68: 1854–1870. https://doi.org/10.1016/j.jastp.2006.02.009. [CrossRef] [Google Scholar]
- Laštovička J, Solomon SC, Qian L. 2012. Trends in the neutral and ionized upper atmosphere. Space Sci Rev 168: 113–145. https://doi.org/10.1007/s11214-011-9799-3. [CrossRef] [Google Scholar]
- Laštovička J, Urbar J, Kozubek M. 2017. Long-term trends in the total electron content. Geophys Res Lett 44: 8168–8172. https://doi.org/10.1002/2017GL075063. [CrossRef] [Google Scholar]
- Laštovička J, Jelínek Š. 2019. Problems in calculating long-term trends in the upper atmosphere, Journal of Atmospheric. J Atmos Sol Terr Phys 189: 80–86. https://doi.org/10.1016/j.jastp.2019.04.011. [CrossRef] [Google Scholar]
- Laštovička J. 2022. Long-term changes in ionospheric climate in terms of foF2. Atmosphere 13: 110. https://doi.org/10.3390/atmos13010110. [CrossRef] [Google Scholar]
- Lean JL, Meier RR, Picone JM, Sassi F, Emmert JT, Richards PG. 2016. Ionospheric total electron content: Spatial patterns of variability. J Geophys Res Space Phys 121: 10367–10402. https://doi.org/10.1002/2016JA023210. [Google Scholar]
- Lin CH, Liu CH, Liu JY, Chen CH, Burns AG, Wang W. 2010. Midlatitude summer nighttime anomaly of the ionospheric electron density observed by FORMOSAT-3/COSMIC. J Geophys Res 115: A03308. https://doi.org/10.1029/2009JA014084. [Google Scholar]
- Mielich J, Bremer J. 2013. Long-term trends in the ionospheric F2 region with different solar activity indices. Ann Geophys 31: 291–303. https://doi.org/10.5194/angeo-31-291-2013. [CrossRef] [Google Scholar]
- Mikhailov AV, Marin D. 2001. An interpretation of the foF2 and hmF2 long-term trends in the framework of the geomagnetic control concept. Ann Geophys 19: 733–748. https://doi.org/10.5194/angeo-19-733-2001. [CrossRef] [Google Scholar]
- Noll CE. 2010. The crustal dynamics data information system: a resource to support scientific analysis using space geodesy. Adv Space Res 45(12): 1421–1440. https://doi.org/10.1016/j.asr.2010.01.018. [CrossRef] [Google Scholar]
- Ogawa Y, Motoba T, Buchert SC, Häggström I, Nozawa S. 2014. Upper atmosphere cooling over the past 33 years. Geophys Res Lett 41: 5629–5635. https://doi.org/10.1002/2014GL060591. [CrossRef] [Google Scholar]
- Oliver WL, Zhang SR, Goncharenko LP. 2013. Is thermospheric global cooling caused by gravity waves? J Geophys Res Space Phys 118: 3898–3908. https://doi.org/10.1002/jgra.50370 [CrossRef] [Google Scholar]
- Perrone L, Mikhailov A, Cesaroni C, Alfonsi L, De Santis A, Pezzopane M, Scotto C. 2017. Long-term variations of the upper atmosphere parameters on Rome ionosonde observations and their interpretation. J. Space Weather Space Clim. 7: A21. https://doi.org/10.1051/swsc/2017021. [CrossRef] [EDP Sciences] [Google Scholar]
- Qian L, Roble RG, Solomon SC, Kane TJ. 2006. Calculated and observed climate change in the thermosphere, and a prediction for solar cycle 24. Geophys Res Lett 33: L23705. https://doi.org/10.1029/2006GL027185. [Google Scholar]
- Qian L, Burns AG, Solomon SC, Roble RG. 2009. The effect of carbon dioxide cooling on trends in the F2-layer ionosphere. J Atmos Sol Terr Phys 71: 1592–1601. https://doi.org/10.1016/j.jastp.2009.03.006. [CrossRef] [Google Scholar]
- Reinisch BW, Galkin IA. 2011. Global ionospheric radio observatory (GIRO). Earth Planet Space 63: 377–381. https://doi.org/10.5047/eps.2011.03.001. [CrossRef] [Google Scholar]
- Rishbeth H. 1990. A greenhouse effect in the ionosphere? Planet Space Sci 38: 945–948. https://doi.org/10.1016/0032-0633(90)90061-T. [CrossRef] [Google Scholar]
- Rishbeth H. 1997. Long-term changes in the ionosphere. Adv Space Res 20: 2149–2155. https://doi.org/10.1016/S0273-1177(97)00607-8. [CrossRef] [Google Scholar]
- Roble RG, Dickinson RE. 1989. How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere? Geophys Res Lett 16: 1441–1444. https://doi.org/10.1029/GL016i012p01441. [CrossRef] [Google Scholar]
- Shimazaki T. 1955. World-wide daily variations in the height of the maximum electron density in the ionospheric F2 layer. J Radio Res Labs Japan 2: 85–97. [Google Scholar]
- Schaer S, Beutler G, Rothacher M. 1998. Mapping and Predicting the Ionosphere. In: Proceedings of the 1998 IGS Analysis Center Workshop, Darmstadt, February 9–11, Dow JM, Kouba J, Springer T, (Eds.), ESA/ESOC, Darmstadt. pp. 307–318. [Google Scholar]
- Sivakandan M, Mielich J, Renkwitz T, Chau JL, Jaen J, Laštovička J. 2023. Long-term variations and residual trends in the E, F, and sporadic E (Es) layer over Juliusruh, Europe. J Geophys Res Space Phys 128: e2022JA031097. https://doi.org/10.1029/2022JA031097. [CrossRef] [Google Scholar]
- Solomon SC, Woods TN, Didkovsky LV, Emmert JT, Qian L. 2010. Anomalously low solar extreme-ultraviolet irradiance and thermospheric density during solar minimum. Geophys Res Lett 37: L16103. https://doi.org/10.1029/2010GL044468. [Google Scholar]
- Solomon SC, Qian L, Roble RG. 2015. New 3-D simulations of climate change in the thermosphere. J Geophys Res Space Phys 120: 2183–2193. https://doi.org/10.1002/2014JA020886. [CrossRef] [Google Scholar]
- Tapping KF, Valdés JJ. 2011. Did the sun change its behaviour during the decline of cycle 23 and into cycle 24? Solar Phys 272: 337–350. https://doi.org/10.1007/s11207-011-9827-1. [CrossRef] [Google Scholar]
- Thampi SV, Balan N, Lin C, Liu H, Yamamoto M. 2011. Mid-latitude Summer Nighttime Anomaly (MSNA) – observations and model simulations. Ann Geophys 29: 157–165. https://doi.org/10.5194/angeo-29-157-2011. [CrossRef] [Google Scholar]
- Titheridge JE. 1973. The slab thickness of the mid-latitude ionosphere. Planet Space Sci 21(10): 1775–1793. https://doi.org/10.1016/0032-0633(73)90168-2. [CrossRef] [Google Scholar]
- Torr DG, Torr MR, Richards PG. 1980. Causes of the F region winter anomaly. Geophys Res Lett 7: 301–304. https://doi.org/10.1029/GL007i005p00301. [CrossRef] [Google Scholar]
- Ulich T, Clilverd MA, Rishbeth H. 2003. Determining long-term change in the ionosphere. Eos Trans 84(52): 581–585. https://doi.org/10.1029/2003EO520002. [CrossRef] [Google Scholar]
- Wintoft P. 2011. The variability of solar EUV: a multiscale comparison between sunspot number, 10.7cm flux, LASP MgII index, and SOHO/SEM EUV flux. J Atmos Sol Terr Phys 73: 1708–1714. https://doi.org/10.1016/j.jastp.2011.03.009. [CrossRef] [Google Scholar]
- Zhang Y, Paxton LX. 2011. Long-term variation in the thermosphere: TIMED/GUVI observations. J Geophys Res 116: A00H02. https://doi.org/10.1029/2010JA016337. [CrossRef] [Google Scholar]
- Zhang Y, Wu Z, Feng J, Xu T, Deng Z, Ou M, Xiong W, Zhen W. 2021. Statistical study of ionospheric equivalent slab thickness at Guam magnetic equatorial location. Remote Sens 13: 5175. https://doi.org/10.3390/rs13245175. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.