Open Access
Issue |
J. Space Weather Space Clim.
Volume 14, 2024
|
|
---|---|---|
Article Number | 29 | |
Number of page(s) | 23 | |
DOI | https://doi.org/10.1051/swsc/2024028 | |
Published online | 15 November 2024 |
- Aarons J. 1982. Global morphology of ionospheric scintillations. Proc IEEE 70: 360–378. https://doi.org/10.1109/PROC.1982.12314. [CrossRef] [Google Scholar]
- Aarons J, Mendillo M, Yantosca R, Kudeki E. 1996. GPS phase fluctuations in the equatorial region during the MISETA 1994 campaign. J Geophys Res 101: 26851–26862. https://doi.org/10.1029/96JA00981. [CrossRef] [Google Scholar]
- Acharya R, Majumdar S. 2019. Statistical relation of scintillation index S4 with ionospheric irregularity index ROTI over Indian equatorial region. Adv Space Res 64: 1019–1033. https://doi.org/10.1016/j.asr.2019.05.018. [CrossRef] [Google Scholar]
- Aol S, Buchert S, Jurua E. 2020. Ionospheric irregularities and scintillations: a direct comparison of in situ density observations with ground-based L-band receivers. Earth Planets Space 72: 164. https://doi.org/10.1186/s40623-020-01294-z. [CrossRef] [Google Scholar]
- Balan N, Liu L, Le H. 2018. A brief review of equatorial ionization anomaly and ionospheric irregularities. Earth Planetary Phys 2: 257–275. https://doi.org/10.26464/epp2018025. [CrossRef] [Google Scholar]
- Basu S, Groves K, Quinn J, Doherty P. 1999. A comparison of TEC fluctuations and scintillations at Ascension Island. J Atm Terr Phys 61: 1219–1226. https://doi.org/10.1016/S1364-6826(99)00052-8. [CrossRef] [Google Scholar]
- Béniguel Y, Hamel P. 2011. A global ionosphere scintillation propagation model for equatorial regions. J Space Weather Space Clim 1: A04. https://doi.org/10.1051/swsc/2011004. [Google Scholar]
- Bhattacharyya A, Beach TL, Basu S, Kintner PM. 2000. Nighttime equatorial ionosphere: GPS scintillations and differential carrier phase fluctuations. Radio Sci 35: 209–224. https://doi.org/10.1029/1999RS002213. [CrossRef] [Google Scholar]
- Booker HG, MajidiAhi G. 1982. Theory of refractive scattering in scintillation phenomena. J Atm Terr Phys 43: 1199–1214. https://doi.org/10.1016/0021-9169(81)90035-0. [Google Scholar]
- Borries C, Wilken V, Jacobsen KS, García-Rigo A, Dziak-Jankowska B, et al. 2020. Assessment of the capabilities and applicability of ionospheric perturbation indices provided in Europe. Adv Space Res 66: 546–562. https://doi.org/10.1016/j.asr.2020.04.013. [CrossRef] [Google Scholar]
- Carrano C, Groves K. 2007. TEC gradients and fluctuations at low, latitudes measured with high data rate GPS receivers. In: Proceedings of the 63rd Annual Meeting of The Institute of Navigation, Cambridge, MA, USA, April 23–25, pp. 156–163. [Google Scholar]
- Cesaroni C, Spogli L, Alfonsi L, De Franceschi G, Ciraolo L, Monico JFG, Scotto C, Romano V, Aquino M, Bougard B. 2015. L-band scintillations and calibrated total electron content gradients over Brazil during the last solar maximum. J Space Weather Space Clim 5: A36. https://doi.org/10.1051/swsc/2015038. [CrossRef] [EDP Sciences] [Google Scholar]
- Charnotskii M. 2013. Sparce spectrum model for a turbulent phase. J Opt Soc Am A 30: 479–488. https://doi.org/10.1364/JOSAA.30.000479. [CrossRef] [Google Scholar]
- Chernov L. 1960. Wave propagation in a random medium. McGraw-Hill, New York. [Google Scholar]
- Conroy JP, Deshpande K, Scales W, Zaghloul A. 2022. Statistical analysis of refractive and diffractive scintillation at high latitudes. Radio Sci 57: e2021RS007259. https://doi.org/10.1029/2021RS007259. [CrossRef] [Google Scholar]
- Coster A, Skone S. 2009. Monitoring storm-enhanced density using IGS reference station data. J Geod 83: 345–351. https://doi.org/10.1007/s00190-008-0272-3. [CrossRef] [Google Scholar]
- Crain CM, Booker HG, Ferguson JA. 1979. Use of refractive scattering to explain SHF scintillations. Radio Sci 14: 125–134. https://doi.org/10.1029/RS014i001p00125. [CrossRef] [Google Scholar]
- De Franceschi G, Spogli L, Alfonsi L, Romano V, Cesaroni C, Hunstad I. 2019. The ionospheric irregularities climatology over Svalbard from solar cycle 23. Sci Rep 9: 9232. https://doi.org/10.1038/s41598-019-44829-5. [CrossRef] [Google Scholar]
- Doherty P, Coster AJ, Murtagh W. 2004. Space weather effects of October–November 2003. GPS Solut 8: 267–271. https://doi.org/10.1007/s10291-004-0109-3. [CrossRef] [Google Scholar]
- Eastes RW, McClintock WE, Burns AG, Anderson D, Andersson L, et al. 2017. The Global-scale Observations of the Limb and Disk (GOLD) mission. Space Sci Rev 212: 383–408. https://doi.org/10.1007/s11214-017-0392-2. [CrossRef] [Google Scholar]
- Fallows RA, Forte B, Astin I, Allbrook T, Arnold A, et al. 2020. A LOFAR observation of ionospheric scintillation from two simultaneous travelling ionospheric disturbances. J Space Weather Space Clim 10: 10. https://doi.org/10.1051/swsc/2020010. [CrossRef] [EDP Sciences] [Google Scholar]
- Forte B. 2008. Refractive scattering evidence from multifrequency scintillationspectra observed at auroral latitudes. Radio Sci 43: RS2012. https://doi.org/10.1029/2007RS003715. [CrossRef] [Google Scholar]
- Forte B, Coleman C, Skone S, Häggström I, Mitchell C, De Dalt F, Panicciari T, Kinrade J, Bust G. 2017. Identification of scintillation signatures on GPS signalsoriginating from plasma structures detected with EISCAT incoherent scatter radaralong the same line of sight. J Geophys Res 122: 916–931. https://doi.org/10.1002/2016JA023271. [CrossRef] [Google Scholar]
- Fremouw EJ, Leadabrand RL, Livingston RC, Cousins MD, Rino CL, Fair BC, Long RA. 1978. Early results from the DNA Wideband satellite experiment – complex-signal scintillation. Radio Sci 13: 167–187. https://doi.org/10.1029/RS013i001p00167. [CrossRef] [Google Scholar]
- Friis-Christensen E, Lühr H, Hulot G. 2006. Swarm: a constellation to study the Earth’s magnetic field. Earth Planet Space 58: 351–358. https://doi.org/10.1186/BF03351933. [CrossRef] [Google Scholar]
- Gherm V, Zernov NN, Strangeways JJ. 2005. Propagation model for transionospheric fluctuating paths of propagation: Simulator of the transionospheric channel. Radio Sci 40: RS1003. https://doi.org/10.1029/2004RS003097. [Google Scholar]
- Ghobadi H, Spogli L, Alfonsi L, Cesaroni C, Cicone A, Linty N, Romano V, Cafaro M. 2020. Disentangling ionospheric refraction and diffraction effects in GNSS raw phase through fast iterative filtering technique. GPS Solut 24: 85. https://doi.org/10.1007/s10291-020-01001-1. [CrossRef] [Google Scholar]
- Goodman JW. 2015. Statistical optics. John Wiley & Sons, New Jersey. [Google Scholar]
- Hamza AM, Song K, Meziane K, Jayachandran PT. 2023. Two-component phase scintillation spectra in the auroral region: observations and model. J Geophys Res 129: e2023JA031998. https://doi.org/10.1029/2023JA031998. [Google Scholar]
- Hardin RH, Tappert FD, Whippany NJ. 1973. Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations. Siam Rev 15: 423. [Google Scholar]
- Hong J, Chung J-K, Kim YH, Park J, Kwon H-J, Kim J-H, Choi J-M, Kwak Y-S. 2020. Characteristics of ionospheric irregularities using GNSS scintillation indices measured at Jang Bogo Station, Antarctica (74.62°S, 164.22°E). Space Weather 18: e2020SW002536. https://doi.org/10.1029/2020SW002536. [CrossRef] [Google Scholar]
- Huang C-S, de La Beaujardiere O, Roddy PA, Hunton DE, Liu JY, Chen SP. 2014. Occurrence probability and amplitude of equatorial ionospheric irregularities associated with plasma bubbles during low and moderate solar activities (2008–2012). J Geophys Res Space Phys 119: 1186–1199. https://doi.org/10.1002/2013JA019212. [CrossRef] [Google Scholar]
- Imam R, Spogli L, Alfonsi L, Cesaroni C, Jin Y, Lasse Clausen BN, Wood A, Miloch WJ. 2023. Feasibility of a Swarm-based proxy for amplitude scintillation on GNSS signals. In: 2023 XXXVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), Sapporo, Japan, 19–26 August, pp. 1–4. https://doi.org/10.23919/URSIGASS57860.2023.10265519. [Google Scholar]
- Ishimaru A. 2017. Electromagnetic wave propagation, radiation, and scattering. John Wiley & Sons, New Jersey. [CrossRef] [Google Scholar]
- Jakowski N, Borries C, Wilken V. 2012. Introducing a disturbance ionosphere index. Adv Space Res 47: RS0L14. https://doi.org/10.1029/2011RS004939. [Google Scholar]
- Jakowski N, Hoque M. 2019. Estimation of spatial gradients and temporal variations of the total electron content using ground-based GNSS measurements. Space Weather 17: 339–356. https://doi.org/10.1029/2018SW002119. [CrossRef] [Google Scholar]
- Jakowski N, Hoque M, Mayer C. 2011. A new global TEC model for estimating transionospheric radio wave propagation errors. J Geod 85: 965–974. https://doi.org/10.1007/s00190-011-0455-1. [CrossRef] [Google Scholar]
- Jin Y, Moen JI, Miloch W. 2015. On the collocation of the cusp aurora and the GPS phase scintillation: a statistical study. J Geophys Res 120: 9176–9191. https://doi.org/10.1002/2015JA021449. [CrossRef] [Google Scholar]
- Jin Y, Spicher A, Xiong C, Clausen LBN, Kervalishvili G, Stolle C, Miloch WJ. 2019. Ionospheric plasma irregularities characterized by the Swarm satellites: statistics at high latitudes. J Geophys. Res 124: 1262–1282. https://doi.org/10.1029/2018JA026063. [CrossRef] [Google Scholar]
- Juan JM, Sanz J, Rovira-Garcia A, González-Casado G, Ibáñez D, Perez RO. 2018. AATR an ionospheric activity indicator specifically based on GNSS measurements. J Space Weather Space Clim 8: A14. https://doi.org/10.1051/swsc/2017044. [CrossRef] [EDP Sciences] [Google Scholar]
- Keller JB. 1960. Wave propagation in random media, Technical report AFCRL-TN-60-1149. New York University, Institute of Mathematical Sciences. [Google Scholar]
- Kinrade J, Mitchell CM, Yin P, Smith N, Jarvis MJ, Maxfield DJ, Rose MC, Bust GS, Weatherwax AT. 2012. Ionospheric scintillation over Antarctica during the storm of 5–6 April 2010. J Geophys Res 117: A05304. https://doi.org/10.1029/2011JA017073. [Google Scholar]
- Kintner PM, Kil H, Beach TL, de Paula ER. 2001. Fading timescales associated with GPS signals and potential consequences. Radio Sci 36: 731–743. https://doi.org/10.1029/1999RS002310. [CrossRef] [Google Scholar]
- Kintner PM, Ledvina BM, de Paula ER. 2007. GPS and ionospheric scintillations. Space Weather 5: S09003. https://doi.org/10.1029/2006SW000260. [Google Scholar]
- Knepp DL. 1983. Multiple phase-screen calculation of the temporal behavior of stochastic waves. Proc IEEE 71: 722–737. https://doi.org/10.1109/PROC.1983.12660. [CrossRef] [Google Scholar]
- Konno H, Pullen S, Rife J, Enge P. 2006. Evaluation of two types of dual-frequency differential GPS techniques under anomalous ionosphere conditions. In: Proceedings of the National Technical Meeting of The Institute of Navigation, Monterey, CA, USA, 18–20 January, pp. 735–747. [Google Scholar]
- Kotova D, Jin Y, Spogli L, Wood AG, Urbar J, et al. 2023. Electron density fluctuations from Swarm as a proxy for ground-based scintillation data: A statistical perspective. Adv Space Res 72: 5399–5415. https://doi.org/10.1016/j.asr.2022.11.042. [CrossRef] [Google Scholar]
- Kravtsov YA, Orlov YI. 1980. Limits of applicability of the method of geometric optics and related problems. Sov Phys Usp 23: 750–762. https://doi.org/10.1070/PU1980v023n11ABEH005060. [CrossRef] [Google Scholar]
- Kravtsov YA, Orlov YI. 1990. Geometrical optics of inhomogeneous media. Springer Verlag, Heidelberg. [CrossRef] [Google Scholar]
- Lamarche LJ, Deshpande KB, Zettergren MD. 2022. Observations and modeling of scintillation in the vicinity of a polar cap patch. J Space Weather Space Clim 12: 27. https://doi.org/10.1051/swsc/2022023. [CrossRef] [EDP Sciences] [Google Scholar]
- Ledvina BM, Makela JJ, Kintner PM. 2002. First observations of intense GPS L1 amplitude scintillations at midlatitude. Geophys Res Lett 29: 4-1–4-4. https://doi.org/10.1029/2002GL014770. [CrossRef] [Google Scholar]
- Lee WK, Kil H, Paxton LJ. 2021. Global distribution of nighttime MSTIDs and its association with E region irregularities seen by CHAMP satellite. J Geophys Res 126: e2020JA028836. https://doi.org/10.1029/2020JA028836. [CrossRef] [Google Scholar]
- Li G, Ning B, Otsuka Y, Abdu MA, Abadi P, Liu Z, Spogli L, Wan W. 2020. Challenges to equatorial plasma bubble and ionospheric scintillation short-term forecasting and future aspects in East and Southeast Asia. Surv Geophys 74: 201–238. https://doi.org/10.1007/s10712-020-09613-5. [Google Scholar]
- Li G, Ning B, Ren Z, Hu L. 2010. Statistics of GPS ionospheric scintillation and irregularities over polar regions at solar minimum. GPS Solut 14: 331–341. https://doi.org/10.1007/s10291-009-0156-x. [CrossRef] [Google Scholar]
- Liu H, Yue J, Su Y, Zhan X. 2016. Ameliorating calculation of ionospheric amplitude scintillation index from under-sampled phase measurement. Adv Space Res 58: 1696–1707. https://doi.org/10.1016/j.asr.2016.06.036. [CrossRef] [Google Scholar]
- Loucks D, Palo S, Pilinski M, Crowley G, Azeem I, Hampton D. 2017. High-latitude GPS phase scintillation from E region electron density gradients during the 20–21 December 2015 geomagnetic storm. GPS Solut 122: 7473–7490. https://doi.org/10.1002/2016JA023839. [Google Scholar]
- Luo M, Pullen S, Ene A, Qiu D, Walter T, Enge P. 2004. Ionospheric threat to LAAS: updated model, user impact, and mitigations. In: Proceedings of the 17th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2004), Long Beach, CA, USA, 21–24 September, pp. 2771–2785. [Google Scholar]
- Luo X, Lou Y, Xiao Q, Gu S, Chen B, Liu Z. 2018. Investigation of ionospheric scintillation effects on BDS precise point positioning at low-latitude regions. GPS Solut 22: 63. https://doi.org/10.1007/s10291-018-0728-8. [CrossRef] [Google Scholar]
- Mahalov A, McDaniel A. 2019. Long-range propagation through inhomogeneous turbulent atmosphere: analysis beyond phase screens. Phys Scr 94: 034003. https://doi.org/10.1088/1402-4896/aaf32c. [CrossRef] [Google Scholar]
- McNamara LF, Caton RG, Parris RT, Pedersen TR, Thompson DC, Wiens KC, Groves KM. 2013. Signatures of equatorial plasma bubbles in VHF satellite scintillations and equatorial ionograms. Radio Sci 48: 89–101. https://doi.org/10.1002/rds.20025. [CrossRef] [Google Scholar]
- Mercier RP. 1962. Diffraction by a screen causing large random phase fluctuations. Proc Camb Phil Soc, A 58: 382–400. https://doi.org/10.1017/S0305004100036586. [Google Scholar]
- Muella MTAH, de Paula ER, Monteiro AA. 2013. Ionospheric scintillation and dynamics of Fresnel-scale irregularities in the inner region of the equatorial ionization anomaly. Surv Geophys 34: 233–251. https://doi.org/10.1007/s10712-012-9212-0. [CrossRef] [Google Scholar]
- Mushini SC, Donovan E, Jayachandran PT, Langley RB, Prikryl P, Spanswick E. 2014. On the relation between auroral “scintillation” and “phase without amplitude”. In: 2014 XXXIst URSI General Assembly and Scientific Symposium (URSI GASS), Beijing, China, 16–23 August, pp. 1–4. https://doi.org/10.1109/URSIGASS.2014.6929726. [Google Scholar]
- Nishimura Y, Kelly T, Jayachandran PT, Mrak S, Semeter JL, Donovan EF, Angelopoulos V, Nishitani N. 2023. Nightside high-latitude phase and amplitude scintillation during a substorm using 1-second scintillation indices. J Geophys Res 128: e2023JA031402. https://doi.org/10.1029/2023JA031402. [CrossRef] [Google Scholar]
- Nishimura Y, Mrak S, Semeter JL, Coster AJ, Jayachandran PT, Groves KM, Knudsen DJ, Nishitani N, Ruohoniemi JM. 2021. Evolution of mid-latitude density irregularities and scintillation in North America during the 7–8 September 2017 storm. J Geophys Res 126: e2021JA029192. https://doi.org/10.1029/2021JA029192. [CrossRef] [Google Scholar]
- Olwendo J, Cilliers PJ, Ming O. 2019. Comparison of ground-based ionospheric scintillation observations with in situ electron density variationsas measured by the Swarm Satellites. Radio Sci 54: 852–866. https://doi.org/10.1029/2018RS006734. [CrossRef] [Google Scholar]
- Olwendo JO, Cilliers PJ, Baki P, Mito C. 2012. Using GPS-SCINDA observations to study the correlation between scintillation, total electron content enhancement and depletions over the Kenyan region. Adv Space Res 49: 1363–1372. https://doi.org/10.1016/j.asr.2012.02.006. [CrossRef] [Google Scholar]
- Patel K, Singh AK, Subrahmanyam P, Singh A. 2011. Modeling of ionospheric scintillation at low-latitude. Adv Space Res 47: 515–524. https://doi.org/10.1016/j.asr.2010.09.017. [CrossRef] [Google Scholar]
- Paulson DA, Wu C, Davies CC. 2019. Randomized spectral sampling for efficient simulation of laser propagation through optical turbulence. J Opt Soc Am B 36: 3249–3262. https://doi.org/10.1364/JOSAB.36.003249. [CrossRef] [Google Scholar]
- Pi X, Mannucci AJ, Lindqwister UJ, Ho CM. 1997. Monitoring of global ionospheric irregularities using the Worldwide GPS Network. Geophys Res Lett 24: 2283–2286. https://doi.org/10.1029/97GL02273. [Google Scholar]
- Pradipta R, Doherty PH. 2015. Assesing of occurrence pattern of large ionospheric TEC gradients over the Brazilian airspace. Navigation 63: 335–343. https://doi.org/10.1002/navi.141. [Google Scholar]
- Prikryl P, Jayachandran PT, Mushini SC, Chadwick R. 2011. Climatology of GPS phase scintillation and HF radar backscatter for the high-latitude ionosphere under solar minimum conditions. Ann Geophys 29: 377–392. https://doi.org/10.5194/angeo-29-377-2011. [CrossRef] [Google Scholar]
- Priyadarshi S, Zhang Q-H, Ma Y-Z. 2018. Antarctica SED/TOI associated ionospheric scintillation during 27 February 2014 geomagnetic storm. Astrophys Space Sci 363: 262. https://doi.org/10.1007/s10509-018-3484-x. [CrossRef] [Google Scholar]
- Rice SO. 1944. Mathematical analysis of random noise. Bell Sys Tech J 23: 282–332. https://doi.org/10.1002/j.1538-7305.1944.tb00874.x. [CrossRef] [Google Scholar]
- Rino C. 2011. The theory of scintillation with applications in remote sensing. John Wiley & Sons, New Jersey. [CrossRef] [Google Scholar]
- Rino CL. 1979. A power law phase screen model for ionospheric scintillation: 1. Weak scatter. Radio Sci 14: 1135–1145. https://doi.org/10.1029/RS014i006p01135. [CrossRef] [Google Scholar]
- Salpeter EE. 1966. Interplanetary scintillations. I. Theory. Astrophys J 147: 433–448. https://doi.org/10.1086/149027. [Google Scholar]
- Sato H, Kim JS, Otsuka Y, Wrasse CM, de Paula ER, de Souza JR. 2021. L-band synthetic aperture radar observation of ionospheric density irregularities at equatorial plasma depletion region. Geophys Res Lett 48: e2021GL093541. https://doi.org/10.1029/2021GL093541. [CrossRef] [Google Scholar]
- Schmidt JD. 2010. Numerical simulation of optical wave propagation. SPIE, Bellingham. [Google Scholar]
- Schmidt JD, Miller NJ. 2019. Turbulent phase derivative screens and verification of their statistics. Opt Lett 44: 2728–2731. https://doi.org/10.1364/OL.44.002728. [CrossRef] [Google Scholar]
- Seechai K, Myint LMM, Hozumi K, Nishioka M, Saito S, Yamamoto M, Supnithi P. 2023. Simultaneous equatorial plasma bubble observation using amplitude scintillations from GNSS and LEO satellites in low-latitude region. Earth Planet Space 75: 127. https://doi.org/10.1186/s40623-023-01877-6. [CrossRef] [Google Scholar]
- Shkarofsky IP. 1968. Generalized turbulence space-correlation and wave-number spectrum-function pairs. Can J Phys 46: 2133–2153. https://doi.org/10.1139/p68-562. [CrossRef] [Google Scholar]
- Sousasantos J, Affonso BJ, Moraes A, Rodrigues FS, Abdu MA, Salles LA, Vani BC. 2022. Amplitude scintillation severity and fading profiles under alignment between GPS propagation paths and equatorial plasma bubbles. Space Weather 20: e2022SW003243. https://doi.org/10.1029/2022SW003243. [CrossRef] [Google Scholar]
- Spicher A, Deshpande K, Jin Y, Oksavik K, Zettergren MD, Clausen LBN, Moen JI, Hairston MR, Baddeley L. 2020. On the production of ionospheric irregularities via Kelvin-Helmholtz instability associated with cusp flow channels. J Geophys Res 125: e2019JA027734. https://doi.org/10.1029/2019JA027734. [CrossRef] [Google Scholar]
- Spogli L, Alfonsi L, Cesaroni C. 2023. Stepping into an equatorial plasma bubble with a Swarm overfly. Space Weather 21: e2022SW003331. https://doi.org/10.1029/2022SW003331. [CrossRef] [Google Scholar]
- Stankov SM, Warnant R, Stegen K. 2009. Trans-ionospheric GPS signal delay gradients observed over mid-latitude Europe during the geomagnetic storms of October–November 2003. Adv Space Res 43: 1314–1324. https://doi.org/10.1016/j.asr.2008.12.012. [CrossRef] [Google Scholar]
- Strangeways HJ. 2000. Effect of horizontal gradients on ionospherically reflected or transionospheric paths using a precise homing-in method. J Atm Terr Phys 62: 1361–1376. https://doi.org/10.1016/S1364-6826(00)00150-4. [CrossRef] [Google Scholar]
- Sun Y-Y, Matsuo T, Araujo-Pradere EA, Liu J-Y. 2013. Ground-based GPS observation of SED-associated irregularities over CONUS. J Geophys Res 118: 2478–2489. https://doi.org/10.1029/2012JA018103. [CrossRef] [Google Scholar]
- Tatarskii VI. 1971. The effects of the turbulent atmosphere on wave propagation. Israel Program for Scientific Translations, Jerusalem. [Google Scholar]
- Vadakke Veettil S, Haralambous H, Aquino M. 2017. Observations of quiet-time moderate midlatitude L-band scintillation in association with plasma bubbles. GPS Solut 21: 1113–1124. https://doi.org/10.1007/s10291-016-0598-x. [CrossRef] [Google Scholar]
- van der Meeren C, Oksavik K, Lorentzen D, Moen JI, Romano V. 2014. GPS scintillation and irregularities at the front of an ionization tongue in the nightside polar ionosphere. J Geophys Res 119: 8624–8636. https://doi.org/10.1002/2014JA020114. [CrossRef] [Google Scholar]
- Vasylyev D, Béniguel Y, Wilken V, Kriegel M, Berdermann J. 2022. Modeling of ionospheric scintillation. J Space Weather Space Clim 12: 22. https://doi.org/10.1051/swsc/2022016. [CrossRef] [EDP Sciences] [Google Scholar]
- Vats HO, Booker HG, MajidiAhi G. 1981. Quantitative explanation of strong multi-frequency intensity scintillation spectra using refractive scattering. J Atm Terr Phys 43: 1235–1241. https://doi.org/10.1016/0021-9169(81)90145-8. [CrossRef] [Google Scholar]
- Vijayakumar PN, Pasricha PK. 1997. Parametrization of spectra of plasma bubble induced VHF satellite scintillations and its geophysical significance. Ann Geophys 15: 345–354. https://doi.org/10.1007/s00585-997-0345-2. [CrossRef] [Google Scholar]
- Vo HB, Foster JC. 2001. A quantitative study of ionospheric density gradients at midlatitudes. J Geophys Res 106: 21555–21563. https://doi.org/10.1029/2000JA000397. [CrossRef] [Google Scholar]
- Wanninger L. 1993. The occuurence of ionospheric disturbances above Japan and their effects on precise GPS positioning. In: Proceedings of the 8th International Symposium on Recent Crust Movements (CRCM ‘93), Kobe, Japan, 6–11 December, pp. 175–179. [Google Scholar]
- Welsh B. 1997. Fourier-series-based atmospheric phase screen generator for simulating anisoplanatic geometries and temporal evolution. Proc SPIE 3125: 327–338. https://doi.org/10.1117/12.279029. [CrossRef] [Google Scholar]
- Wheelon AD. 2004. Electromagnetic scintillation I. Geometric optics. Cambridge University Press, Cambridge. [Google Scholar]
- Wilken V, Kriegel M, Jakowski N, Berdermann J. 2018. An ionospheric index suitable for estimating the degree of ionospheric perturbations. J Space Weather Space Clim 8: A19. https://doi.org/10.1051/swsc/2018008. [CrossRef] [EDP Sciences] [Google Scholar]
- Wood AG, Alfonsi L, Clausen LB, Jin Y, Spogli L, et al. 2022. Variability of ionospheric plasma: results from the ESA Swarm mission. Space Sci Rev 218: 52. https://doi.org/10.1007/s11214-022-00916-0. [CrossRef] [Google Scholar]
- Yang Z, Liu Z. 2016. Correlation between ROTI and ionospheric scintillation indices using Hong Kong low-latitude GPS data. GPS Solut 20: 815–824. https://doi.org/10.1007/s10291-015-0492-y. [CrossRef] [Google Scholar]
- Yeh KC, Liu C-H. 1982. Radio wave scintillations in the ionosphere. Proc IEEE 70: 324–360. https://doi.org/10.1109/PROC.1982.12313. [CrossRef] [Google Scholar]
- Zakharenkova I, Cherniak I, Braun JJ, Wu Q. 2023. Global maps of equatorial plasma bubbles depletions based on FORMOSAT-7/COSMIC-2 ion velocity meter plasma density observations. Space Weather 21: e2023SW003438. https://doi.org/10.1029/2023SW003438. [CrossRef] [Google Scholar]
- Zheng Y, Xiong C, Jin Y, Liu D, Oksavik K, et al. 2022. The refractive and diffractive contributions to GPS signal scintillation at high latitudes during the geomagnetic storm on 7–8 September 2017. J Space Weather Space Climate 12: 40. https://doi.org/10.1051/swsc/2022036. [CrossRef] [EDP Sciences] [Google Scholar]
- Zhu W, Ding X-L, Jung H-S, Zhang Q, Zhang B-C, Qu W. 2016. Investigation of ionospheric effects on SAR Interferometry (InSAR): a case study of Hong Kong. Adv Space Res 58: 564–576. https://doi.org/10.1016/j.asr.2016.05.004. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.