Open Access
Issue |
J. Space Weather Space Clim.
Volume 14, 2024
|
|
---|---|---|
Article Number | 35 | |
Number of page(s) | 19 | |
DOI | https://doi.org/10.1051/swsc/2024032 | |
Published online | 13 November 2024 |
- Adams JH, Barghouty AF, Mendenhall MH, Reed RA, Sierawski BD, Warren KM, Watts JW, Weller RA. 2012. CRÈME: The 2011 revision of the cosmic ray effects on micro-electronics code. IEEE Trans Nucl Sci 59(6): 3141–3147. https://doi.org/10.1109/TNS.2012.2218831. [CrossRef] [Google Scholar]
- Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand G. 2003. GEANT4 – a simulation toolkit, Nucl Instrum Methods Phys Res A 506(3): 250–303. https://doi.org/10.1016/S0168-9002(03)01368-8. [CrossRef] [Google Scholar]
- Allison J, Amako K, Apostolakis J, Araujo H, Dubois PA, Asai M, Barrand G, Capra R, Chauvie S, Chytracek R. 2006. Geant4 developments and applications. IEEE Trans Nucl Sci 53(1): 270–278. https://doi.org/10.1109/TNS.2006.869826. [CrossRef] [Google Scholar]
- Allison J, Amako K, Apostolakis J, Arce P, Asai M, Aso T, Bagli E, Bagulya A, Banerjee S, Barrand G. 2016. Recent developments in Geant4. Nucl Instrum Methods Phys Res A 835: 186–225. https://doi.org/10.1016/j.nima.2016.06.125. [CrossRef] [Google Scholar]
- Andersson B, Gustafson G, Nilsson-Almqvist B. 1987. A model for low-pT hadronic reactions with generalizations to hadron-nucleus and nucleus-nucleus collisions. Nucl Phys B 281(1–2): 289–309. https://doi.org/10.1016/0550-3213(87)90257-4. [CrossRef] [Google Scholar]
- Auger P, Ehrenfest P, Maze R, Daudin J, Fréon RA. 1939. Extensive cosmic-ray showers. Rev Mod Phys , 11(3–4): 288. https://doi.org/10.1103/RevModPhys.11.288. [CrossRef] [Google Scholar]
- Banjac S, Herbst K, Heber B. 2019. The atmospheric radiation interaction simulator (AtRIS): description and validation, J Geophys Res Space Phys, 124(1): 50–67. https://doi.org/10.1029/2018JA026042. [CrossRef] [Google Scholar]
- Bertini HW, Guthrie MP. 1971. News item results from medium-energy intranuclear-cascade calculation. Nucl Phys A 169(3): 670–672. https://doi.org/10.1016/0375-9474(71)90710-X. [CrossRef] [Google Scholar]
- Bobik P, Boschini MJ, Consolandi C, Della Torre S, Gervasi M, et al. 2013. GeoMag and HelMod webmodels version for magnetosphere and heliosphere transport of cosmic rays. ArXiv Preprint. https://doi.org/10.48550/arXiv.1307.5196 [Google Scholar]
- Boschini MJ, Torre SD, Gervasi M, Grandi D, Jóhannesson G, et al. 2018. HelMod in the works: from direct observations to the local interstellar spectrum of cosmic-ray electrons. Astrophys J 854(2): 94. https://doi.org/10.3847/1538-4357/aaa75e. [CrossRef] [Google Scholar]
- Charpentier G, Ruffenach M, Benacquista R, Ecoffet R, Cappe A, Dossat C, Varotsou A, Cintas H, Paillet A, Boyer L, Mekki J, Valet P, Gourinat Y. 2024. Paper dataset of “ARAMIS: a Martian radiative environment model built from GEANT4 simulations”. In: Journal of Space Weather and Space Climate. Zenodo. https://doi.org/10.5281/zenodo.14035143. [Google Scholar]
- Chen X, Xu S, Song X, Huo R, Luo X. 2023. Astronaut radiation dose calculation with a new galactic cosmic ray model and the AMS-02 data. Space Weather 21(4): e2022SW003285. https://doi.org/10.1029/2022SW003285. [CrossRef] [Google Scholar]
- Cintas H, Wrobel F, Ruffenach M, Herrera D, Saigné F, Varotsou A, Bezerra F, Mekki J. 2023. RAMSEES: a model of the atmospheric radiative environment based on geant4 simulation of extensive air shower. Aerospace 10(3): 295. https://doi.org/10.3390/aerospace10030295. [CrossRef] [Google Scholar]
- Desai M, Giacalone J. 2016. Large gradual solar energetic particle events. Living Rev Sol Phys 13(1): 3. https://doi.org/10.1007/s41116-016-0002-5. [CrossRef] [Google Scholar]
- Desorgher L, Flückiger E, Gurtner M, Moser M, Bütikofer R. 2005. Atmocosmics: Geant 4 code for computing the interaction of cosmic rays with the Earth’s atmosphere. Int J Mod Phys A 20(29): 6802–6804. https://doi.org/10.1142/S0217751X05030132. [CrossRef] [Google Scholar]
- Drake DM, Feldman WC, Jakosky BM. 1988. Martian neutron leakage spectra. J Geophys Res Solid Earth 93(B6): 6353–6368. https://doi.org/10.1029/JB093iB06p06353. [CrossRef] [Google Scholar]
- Durante M, Cucinotta FA. 2011. Physical basis of radiation protection in space travel. Rev Mod Phys 83(4): 1245. https://doi.org/10.1103/RevModPhys.83.1245. [CrossRef] [Google Scholar]
- Ehresmann B, Burmeister S, Wimmer-Schweingruber R, Reitz G. 2011. Influence of higher atmospheric pressure on the Martian radiation environment: Implications for possible habitability in the Noachian epoch. J Geophys Res Space Phys 116(A10): A10106. https://doi.org/10.1029/2011JA016616. [Google Scholar]
- Ehresmann B, Hassler D, Zeitlin C, Guo J, Wimmer-Schweingruber R, Matthiä D, Lohf H, Burmeister S, Rafkin S, Berger T. 2018. Energetic particle radiation environment observed by RAD on the surface of Mars during the September 2017 event. Geophys Res Lett 45(11): 5305–5311. https://doi.org/10.1029/2018GL077801. [CrossRef] [Google Scholar]
- Ehresmann B, Zeitlin C, Hassler DM, Wimmer-Schweingruber RF, Böhm E, Böttcher S, Brinza DE, Burmeister S, Guo J, Köhler J. 2014. Charged particle spectra obtained with the Mars Science Laboratory Radiation Assessment Detector (MSL/RAD) on the surface of Mars. J Geophys Res Planets 119(3): 468–479. https://doi.org/10.1002/2013JE004547. [CrossRef] [Google Scholar]
- Ehresmann B, Zeitlin CJ, Hassler DM, Matthiä D, Guo J, Wimmer-Schweingruber RF, Appel JK, Brinza DE, Rafkin SC, Böttcher SI. 2017. The charged particle radiation environment on Mars measured by MSL/RAD from November 15, 2015 to January 15, 2016. Life Sci Space Res 14: 3–11. https://doi.org/10.1016/j.lssr.2017.07.004. [CrossRef] [Google Scholar]
- Forget F, Hourdin F, Fournier R, Hourdin C, Talagrand O, Collins M, Lewis SR, Read PL, Huot J-P. 1999. Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J Geophys Res Planets 104(E10): 24155–24175. https://doi.org/10.1029/1999JE001025. [CrossRef] [Google Scholar]
- Goldhagen P, Clem JM, Wilson JW. 2004. The energy spectrum of cosmic-ray induced neutrons measured on an airplane over a wide range of altitude and latitude. Radiat Prot Dosimetry 110(1–4): 387–392. https://doi.org/10.1093/rpd/nch216. [CrossRef] [Google Scholar]
- Guo J, Banjac S, Röstel L, Terasa JC, Herbst K, Heber B, Wimmer-Schweingruber RF. 2019a. Implementation and validation of the GEANT4/AtRIS code to model the radiation environment at Mars. J Space Weather Space Climate 9: A2. https://doi.org/10.1051/swsc/2018051. [CrossRef] [EDP Sciences] [Google Scholar]
- Guo J, Khaksarighiri S, Wimmer-Schweingruber RF, Hassler DM, Ehresmann B, et al. 2021a. Directionality of the martian surface radiation and derivation of the upward albedo radiation. Geophys Res Lett 48(15): e2021GL093912. https://doi.org/10.1029/2021GL093912. [CrossRef] [Google Scholar]
- Guo J, Slaba TC, Zeitlin C, Wimmer-Schweingruber RF, Badavi FF, et al. 2017. Dependence of the Martian radiation environment on atmospheric depth: modeling and measurement. J Geophys Res Planets 122(2): 329–341. https://doi.org/10.1002/2016JE005206. [CrossRef] [Google Scholar]
- Guo J, Wimmer-Schweingruber RF, Wang Y, Grande M, Matthiä D, Zeitlin C, Ehresmann B, Hassler DM. 2019b. The pivot energy of solar energetic particles affecting the martian surface radiation environment. Astrophys J Lett 883(1): L12. https://doi.org/10.3847/2041-8213/ab3ec2. [CrossRef] [Google Scholar]
- Guo J, Zeitlin C, Wimmer-Schweingruber RF, Hassler DM, Ehresmann B, Rafkin S, Freiherr von Forstner JL, Khaksarighiri S, Liu W, Wang Y. 2021b. Radiation environment for future human exploration on the surface of Mars: the current understanding based on MSL/RAD dose measurements. Astron Astrophys Rev 29: 1–81. https://doi.org/10.1007/s00159-021-00136-5 [CrossRef] [Google Scholar]
- Guo J, Zeitlin C, Wimmer-Schweingruber RF, McDole T, Köhl P, Appel JC, Matthiä D, Krauss J, Köhler J. 2018. A generalized approach to model the spectra and radiation dose rate of solar particle events on the surface of Mars. Astron J 155(1): 49. https://doi.org/10.3847/1538-3881/aaa085. [CrossRef] [Google Scholar]
- Hassler DM, Norbury JW, Reitz G. 2017. Mars science laboratory radiation assessment detector (MSL/RAD) modeling workshop proceedings. Life Sci Space Res 14: 1–2. https://doi.org/10.1016/j.lssr.2017.06.004. [CrossRef] [Google Scholar]
- Hassler DM, Zeitlin C, Wimmer-Schweingruber R, Böttcher S, Martin C, Andrews J, Böhm E, Brinza D, Bullock M, Burmeister S. 2012. The radiation assessment detector (RAD) investigation. Space Sci Rev 170: 503–558. https://doi.org/10.1007/s11214-012-9913-1. [CrossRef] [Google Scholar]
- Hassler DM, Zeitlin C, Wimmer-Schweingruber RF, Ehresmann B, Rafkin S, Eigenbrode JL, Brinza DE, Weigle G, Böttcher S, Böhm E. 2014. Mars’ surface radiation environment measured with the Mars Science Laboratory’s Curiosity rover. Science 343(6169): 1244797. https://doi.org/10.1126/science.1244797. [CrossRef] [Google Scholar]
- ICRP. 2009. Adult reference computational phantoms. ICRP Publication 110. Ann. ICRP 39(2): 1. [Google Scholar]
- ISECG. 2018. Global exploration roadmap. Available at https://www.nasa.gov/wp-content/uploads/2015/01/ger_2018_small_mobile.pdf. [Google Scholar]
- Khaksarighiri S, Guo J, Wimmer-Schweingruber RF, Löffler S, Ehresmann B, Matthiä D, Hassler DM, Zeitlin C, Berger T. 2023. The zenith-angle dependence of the downward radiation dose rate on the martian surface: modeling versus MSL/RAD measurement. J Geophys Res Planets 128(4): e2022JE007644. https://doi.org/10.1029/2022JE007644. [CrossRef] [Google Scholar]
- Köhler J, Wimmer-Schweingruber RF, Appel J, Ehresmann B, Zeitlin C, et al. 2016. Electron/positron measurements obtained with the Mars Science Laboratory Radiation Assessment Detector on the surface of Mars. Ann Geophys 34(1): 133–141. https://doi.org/10.5194/angeo-34-133-2016. [CrossRef] [Google Scholar]
- Köhler J, Zeitlin C, Ehresmann B, Wimmer-Schweingruber RF, Hassler DM, et al. 2014. Measurements of the neutron spectrum on the Martian surface with MSL/RAD. J Geophys Res Planets 119(3): 594–603. https://doi.org/10.1002/2013JE004539. [CrossRef] [Google Scholar]
- Larsen N, Mishev AL. 2023. Analysis of the ground level enhancement GLE 60 on 15 April 2001, and its space weather effects: comparison with dosimetric measurements. Space Weather 21(8): e2023SW003488. https://doi.org/10.1029/2023SW003488. [CrossRef] [Google Scholar]
- Liu W, Guo J, Wang Y, Slaba TC. 2024. A comprehensive comparison of various galactic cosmic-ray models to the state-of-the-art particle and radiation measurements. Astrophys J Suppl Ser 271(1): 18. https://doi.org/10.3847/1538-4365/ad18ad. [CrossRef] [Google Scholar]
- Luo X, Potgieter MS, Bindi V, Zhang M, Feng X. 2019. A numerical study of cosmic proton modulation using AMS-02 observations. Astrophys J 878(1): 6. https://doi.org/10.3847/1538-4357/ab1b2a. [CrossRef] [Google Scholar]
- Mancusi D, Boudard A, Cugnon J, David J-C, Kaitaniemi P, Leray S. 2014. Extension of the Liège intranuclear-cascade model to reactions induced by light nuclei. Phys Rev C 90(5): 054602. https://doi.org/10.1103/PhysRevC.90.054602. [CrossRef] [Google Scholar]
- Martinez Sierra LM, Jun I, Ehresmann B, Zeitlin C, Guo J, et al. 2023. Unfolding the neutron flux spectrum on the surface of Mars using the MSL-RAD and Odyssey-HEND data. Space Weather 21(8): e2022SW003344. https://doi.org/10.1029/2022SW003344. [CrossRef] [Google Scholar]
- Matthiä D, Berger T, Mrigakshi AI, Reitz G. 2013. A ready-to-use galactic cosmic ray model. Adv Space Res 51(3): 329–338. https://doi.org/10.1016/j.asr.2012.09.022. [CrossRef] [Google Scholar]
- Matthiä D, Ehresmann B, Lohf H, Köhler J, Zeitlin C, et al. 2016. The Martian surface radiation environment – a comparison of models and MSL/RAD measurements. J Space Weather Space Climate 6: A13. https://doi.org/10.1051/swsc/2016008. [CrossRef] [EDP Sciences] [Google Scholar]
- Matthiä D, Hassler DM, de Wet W, Ehresmann B, Firan A, Flores-McLaughlin J, Guo J, Heilbronn LH, Lee K, Ratliff H. 2017. The radiation environment on the surface of Mars-Summary of model calculations and comparison to RAD data. Life Sci Space Res 14: 18–28. https://doi.org/10.1016/j.lssr.2017.06.003. [CrossRef] [Google Scholar]
- McKenna-Lawlor S, Gonçalves P, Keating A, Morgado B, Heynderickx D, Nieminen P, Santin G, Truscott P, Lei F, Foing B. 2012. Characterization of the particle radiation environment at three potential landing sites on Mars using ESA’s MEREM models. Icarus 218(1): 723–734. https://doi.org/10.1016/j.icarus.2011.04.004. [CrossRef] [Google Scholar]
- Millour E, Forget F, Spiga A, Vals M, Zakharov V, et al. 2019. The Mars climate database (version 6). In: EPSC-DPS Joint Meeting 2019, Geneva, Switzerland, 15–20 September. Available at https://digital.csic.es/handle/10261/208013. [Google Scholar]
- Niita K, Sato T, Iwase H, Nose H, Nakashima H, Sihver L. 2006. PHITS – a particle and heavy ion transport code system. Radiat Meas 41(9–10): 1080–1090. https://doi.org/10.1016/j.radmeas.2006.07.013. [CrossRef] [Google Scholar]
- Nymmik RA, Panasyuk MI, Suslov AA. 1996. Galactic cosmic ray flux simulation and prediction. Adv Space Res 17(2): 19–30. https://doi.org/10.1016/0273-1177(95)00508-C. [CrossRef] [Google Scholar]
- Petoussi-Henss N, Bolch W, Eckerman K, Endo A, Hertel N, Hunt J, Pelliccioni M, Schlattl H, Zankl M. 2010. Conversion coefficients for radiological protection quantities for external radiation exposures. Ann ICRP 40(2–5): 1–257. https://doi.org/10.1016/j.icrp.2011.10.001. [CrossRef] [Google Scholar]
- Rafkin SCR, Zeitlin C, Ehresmann B, Hassler D, Guo J, et al. 2014. Diurnal variations of energetic particle radiation at the surface of Mars as observed by the Mars Science Laboratory Radiation Assessment Detector. J Geophys Res Planets 119(6): 1345–1358. https://doi.org/10.1002/2013JE004525. [CrossRef] [Google Scholar]
- Richardson I, Von Rosenvinge T, Cane H, Christian E, Cohen C, Labrador A, Leske R, Mewaldt R, Wiedenbeck M, Stone E. 2014. >25 MeV proton events observed by the high energy telescopes on the STEREO A and B spacecraft and/or at Earth during the First ~ seven years of the STEREO mission. Solar Phys 289: 3059–3107. https://doi.org/10.1007/s11207-014-0524-8. [CrossRef] [Google Scholar]
- Röstel L, Guo J, Banjac S, Wimmer-Schweingruber RF, Heber B. 2020. Subsurface radiation environment of Mars and its implication for shielding protection of future habitats. J Geophys Res Planets 125(3): e2019JE006246. https://doi.org/10.1029/2019JE006246. [CrossRef] [Google Scholar]
- Simonsen LC, Nealy JE, Townsend LW, Wilson JW. 1990. Radiation exposure for manned Mars surface missions. Technical report. National Aeronautics and Space Administration, Available at https://ntrs.nasa.gov/citations/19900009041. [Google Scholar]
- Simpson J. 1983. Elemental and isotopic composition of the galactic cosmic rays. Ann Rev Nucl Part Sci 33(1): 323–382. https://doi.org/10.1146/annurev.ns.33.120183.001543. [CrossRef] [Google Scholar]
- Singleterry Jr RC, Blattnig SR, Clowdsley MS, Qualls GD, Sandridge CA, Simonsen LC, Slaba TC, Walker SA, Badavi FF, Spangler JL. 2010. OLTARIS: On-line tool for the assessment of radiation in space. NASA Technical Paper 216722. National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program. Available at https://ntrs.nasa.gov/citations/20100027428. [Google Scholar]
- Singleterry Jr RC, Blattnig SR, Clowdsley MS, Qualls GD, Sandridge CA, Simonsen LC, Slaba TC, Walker SA, Badavi FF, Spangler JL. 2011. OLTARIS: On-line tool for the assessment of radiation in space. Acta Astronaut 68(7–8): 1086–1097. https://doi.org/10.1016/j.actaastro.2010.09.022. [CrossRef] [Google Scholar]
- Slaba T, Wilson J, Werneth C, Whitman K. 2020. Updated deterministic radiation transport for future deep space missions. Life Sci Space Res 27: 6–18. https://doi.org/10.1016/j.lssr.2020.06.004. [CrossRef] [Google Scholar]
- Slaba TC, Stoffle NN. 2017. Evaluation of HZETRN on the Martian surface: sensitivity tests and model results. Life Sci Space Res 14: 29–35. https://doi.org/10.1016/j.lssr.2017.03.001. [CrossRef] [Google Scholar]
- Slaba TC, Whitman K. 2020. The Badhwar-O’Neill 2020 GCR Model. Space Weather 18(6): e2020SW002456. https://doi.org/10.1029/2020SW002456. [CrossRef] [Google Scholar]
- Webber WR. 1963. An evaluation of the radiation hazard due to solar-particle events. Boeing Report D2-90469 AeroSpace Division, The Boeing Company. [Google Scholar]
- White IR. 2010. simsum: Analyses of simulation studies including Monte Carlo error. Stata J 10(3): 369–385. https://doi.org/10.1177/1536867X1001000305. [CrossRef] [Google Scholar]
- Wilson JW, Chun S, Badavi FF, Townsend LW, Lamkin SL. 1991a. HZETRN: A heavy ion/nucleon transport code for space radiations. NASA Technical Paper 3146. National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program. Available at https://ntrs.nasa.gov/citations/19920006741. [Google Scholar]
- Wilson JW, Townsend LW, Schimmerling W, Khandelwal GS, Khan F, Nealy JE, Cucinotta FA, Simonsen LC, Shinn JL, Norbury JW. 1991b. Transport methods and interactions for space radiations. NASA Reference report 1257. National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program. Available at https://ntrs.nasa.gov/citations/19920006738. [Google Scholar]
- Wimmer-Schweingruber RF, Köhler J, Hassler DM, Guo J, Appel J, Zeitlin C, Böhm E, Ehresmann B, Lohf H, Böttcher SI. 2015. On determining the zenith angle dependence of the Martian radiation environment at Gale Crater altitudes. Geophys Res Lett 42(24): 10557–10564. https://doi.org/10.1002/2015GL066664. [CrossRef] [Google Scholar]
- Zhang J, Guo J, Dobynde MI. 2023. What is the radiation impact of extreme solar energetic particle events on Mars? Space Weather 21(6): e2023SW00490. https://doi.org/10.1029/2023SW003490. [Google Scholar]
- Zhang J, Guo J, Dobynde MI, Wang Y, Wimmer-Schweingruber RF. 2022. From the top of martian olympus to deep craters and beneath: mars radiation environment under different atmospheric and regolith depths. J Geophys Res Planets 127(3): e2021JE007157. https://doi.org/10.1029/2021JE007157. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.