Open Access
Issue |
J. Space Weather Space Clim.
Volume 14, 2024
|
|
---|---|---|
Article Number | 34 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/swsc/2024035 | |
Published online | 15 November 2024 |
- Ball WT, Unruh YC, Krivova NA, Solanki S, Wenzler T, Mortlock DJ, Jaffe AH. 2012. Reconstruction of solar irradiance 1974–2009. A&A 541: 27B. https://doi.org/10.1051/0004-201118702. [Google Scholar]
- Bjørgen JP, Sukhorukov AV, Leenaarts J, Carlsson M, de la Cruz Rodríguez J, et al. 2018. Three-dimensional modeling of the Ca II H and K lines in the solar atmosphere. A&A 611A: 62B. https://doi.org/10.1051/0004-6361/201731926. [Google Scholar]
- Chapman GA, Herzog AD, Lawrence JK, Walton SR, Hudson HS, Fisher BM. 1992. Precise ground-based solar photometry and variations of total irradiance. J Geophys Res 97: A6. https://doi.org/10.1029/91JA03018. [Google Scholar]
- Chapman GA, Cookson AM, Hoyt DV. 1994. Solar irradiance from Nimbus-7 compared with ground-based photometry. Sol Phys 149: 249C. https://doi.org/10.1007/BF00690613. [CrossRef] [Google Scholar]
- Chapman GA, Cookson AM, Dobias JJ. 1997. Solar variability and the relation of facular to sunspot areas during solar cycle 22. Astrophys J 482: 541. https://doi.org/10.1086/304138. [CrossRef] [Google Scholar]
- Chapman GA, Cookson AM, Dobias JJ, Walton SR. 2001. An improved determination of the area ratio of faculae to sunspots. Astrophys J 555: 462. https://doi.org/10.1086/321466. [CrossRef] [Google Scholar]
- Chapman GA, Cookson AM, Preminger DG. 2012. Comparison of TSI from SORCE TIM with SFO ground-based photometry. Sol Phys 276: 35. https://doi.org/10.1007/s11207-011-9867-6. [CrossRef] [Google Scholar]
- Chapman GA, Cookson AM, Preminger DG. 2013. Modeling total solar irradiance with San Fernando observatory ground-based photometry: comparison with ACRIM, PMOD, and RMIB composites. Sol Phys 283: 295. https://doi.org/10.1007/s11207-013-0233-8. [CrossRef] [Google Scholar]
- Chatzistergos T, Krivova NA, Ermolli I, Yeo KL, Mandal S, Solanki SK, Kopp G, Malherbe J. 2021. Reconstructing solar irradiance from historical Ca II K observations. I. Method and its validation. A&A 656: A104. https://doi.org/10.1051/0004-6361/202141516. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Chatzistergos T, Krivova N, Ermolli I. 2022. Full-disc Ca ii K observations – a window to past solar magnetism. Front Astron Space Sci 2022: 938949C. https://doi.org/10.3389/fspas.2022.1038949. [Google Scholar]
- Chatzistergos T, Krivova NA, Yeo KL. 2023. Long-term changes in solar activity and irradiance. J Atmos Sol-Terr Phys 252: 106150. https://doi.org/10.1016/j.jastp.2023.106150. [CrossRef] [Google Scholar]
- Chatzistergos T, Krivova N, Ermolli I. 2024. Understanding the secular variability of solar irradiance: the potential Ca II K observations. J Space Weather Space Clim 14: 9C. https://doi.org/10.1051/swsc/2024006. [CrossRef] [EDP Sciences] [Google Scholar]
- Cook JW, Brueckner GE, Bartoe J-DF. 1983. High resolution telescope and spectrograph observations of solar fine structure in the 1600 A region. Astrophys J 270: 89. https://doi.org/10.1086/184076. [Google Scholar]
- Eddy J. 1976. The Maunder minimum. Science 192: 1189E. https://doi.org/10.1126/science.192.4245.1189. [CrossRef] [Google Scholar]
- Ermolli I, Berrilli F, Florio A. 2003. A measure of the network radiative properties over the solar activity cycle. A&A 412: 857. https://doi.org/10.1051/0004-6361:20031479. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Ermolli I, Matthes K, Dudok de Wit T, Krivova NA, Tourpali K, et al. 2013. Recent variability of the solar spectral irradiance and its impact on climate modelling. Atmos Chem Phys 13: 394. https://doi.org/10.5194/acp-13-3945-2013. [CrossRef] [Google Scholar]
- Ermolli I, Giorgi F, Chatzistergos T. 2022. Rome precision solar photometric telescope: precision solar full-disk photometry during solar cycles 23–25. Front Astron Space Sci 9: 30. https://doi.org/10.3389/fspas.2022.1042740. [CrossRef] [Google Scholar]
- Fontenla J, White OR, Fox PA, Avrett EH, Kurucz RL. 1999. Calculation of solar irradiances. I. Synthesis of the solar spectrum. Astrophys J 518: 480F. https://doi.org/10.1086/307258. [CrossRef] [Google Scholar]
- Fröhlich C. 2006. Solar irradiance variability since 1978. Revision of the PMOD composite during solar cycle 21. Space Sci Rev 125: 53F. https://doi.org/10.1007/s11214-006-9046-5. [Google Scholar]
- Fröhlich C. 2012. Total solar irradiance observations. Surv Geophys 33: 453F. https://doi.org/10.1007/s10712-011-9168-5. [CrossRef] [Google Scholar]
- Fröhlich C. 2016. Determination of time-dependent uncertainty of the total solar irradiance records from 1978 to present. J Space Weather Space Clim 6A: 18F. https://doi.org/10.1051/swsc/2016012. [Google Scholar]
- Hickey JR, Stowe LL, Jacobowitz H, Pellegrino P, Maschhoff RH, House F, Vonder Haar TH. 1980. Initial solar irradiance determinations from Nimbus 7 cavity radiometer measurements. Science 208: 281H. https://doi.org/10.1126/science.208.4441.281. [CrossRef] [Google Scholar]
- Hudson H. 1984. Drift-scan photometry and astrometry, in: Solar irradiance variations on active region time scales. LaBonte BJ, Chapman GA, Hudson HS, Willson RC (Eds). NASA conference publication, 2310, p. 297. [Google Scholar]
- Johannesson A, Marquette WH, Zirin H. 1998. A 10-year set of Ca II k-line filtergrams. Sol Phys 177: 265J. https://doi.org/10.1023/A:1004940227692. [CrossRef] [Google Scholar]
- Kobel P, Solanki SK, Borrero JM. 2011. The continuum intensity as a function of magnetic field. I. Active region and quiet Sun magnetic elements. A&A 531: A112. https://doi.org/10.1051/0004-6361/201016255. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Kopp G, Lawrence G. 2005. The total irradiance monitor (TIM): instrument design. Sol Phys 230: 91K. https://doi.org/10.1007/s11207-005-7446-4. [CrossRef] [Google Scholar]
- Kopp G, Lawrence G, Rottman G. 2005. The total irradiance (TIM): science results. Sol Phys 230: 129K. https://doi.org/10.1007/211207-005-7433-9. [CrossRef] [Google Scholar]
- Kopp G, Lean JL. 2011. A new, lower value of total solar irradiance: evidence and climate significance. Geophys Res Lett 38: 1706K. https://doi.org/10.1029/2010GL045777. [Google Scholar]
- Kopp G. 2016. Magnitudes and timescales of total solar irradiance variability. J Space Weather Space Clim 6: A30. https://doi.org/10.1051/swsc/2016025. [CrossRef] [EDP Sciences] [Google Scholar]
- Kopp G. 2021. Science highlights and final updates from 17 years of total solar irradiance measurements from the solar radiation and climate experiment/total irradiance monitor (SORCE/TIM). Sol Phys 296: 133. https://doi.org/10.1007/s11207-021-01853-x. [CrossRef] [Google Scholar]
- Kren AC, Pilewskie P, Coddington O. 2017. Where does Earth’s atmosphere get its energy? J Space Weather Space Clim 7A: 10K. https://doi.org/10.1051/swsc/2017007. [Google Scholar]
- Krivova NA, Solanki SK, Fligge M, Unruh YC. 2003. Reconstruction of solar irradiance variations in cycle 23: is solar surface magnetism the cause? A&A 399: 1K. https://doi.org/10.1051/0004-6361:20030029. [Google Scholar]
- Kurucz RL. 1991. The solar spectrum, in: Solar interior and atmosphere. Cox AN, Livingston WC, Matthews MS (Eds). University of Arizona Press, pp. 663–669. [Google Scholar]
- Lawrence JK, Chapman GA, Herzog AD. 1988. Photometric observations of facular contrasts near the solar limb. Astrophys J 324: 1184. https://doi.org/10.1086/166986. [CrossRef] [Google Scholar]
- Lawrence JK, Topka KP, Jones HP. 1993. Contrast of faculae near the disk center and solar variability. J Geophys Res 98: 18911. https://doi.org/10.1029/93JA01942. [CrossRef] [Google Scholar]
- Lean J. 1989. Contribution of ultraviolet irradiance variations to changes in the Sun’s total irradiance. Science 244: 197. https://doi.org/10.1126/science.244.4901.197. [CrossRef] [Google Scholar]
- Lemen JR, Title AM, Akin DJ, Boerner PF, Chou C, et al. 2012. The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Sol Phys 275: 17. https://doi.org/10.1007/s11207-011-9776-8. [CrossRef] [Google Scholar]
- Marchenko S, Lean JL, DeLand M. 2022. Relationship between total solar irradiance and magnetic flux during solar minima. Astrophys J 936: 158. https://doi.org/10.3847/1538-4357/ac8a98. [CrossRef] [Google Scholar]
- Montillet JP, Finsterle W, Kermarrec G, Sikonja R, Haberreiter M, Schmutz W, Dudok de Wit T. 2022. Data fusion of total solar irradiance composite time series using 41 years of satellite measurements. arXiv 2207: 04926M. https://doi.org/10.48550/arXiv.2207.04926. [Google Scholar]
- Pesnell WD, Thompson BJ, Chamberlin PC. 2012. The solar dynamics observatory (SDO). Sol Phys 275: 3P. https://doi.org/10.1007/s11207-011-9841-3. [CrossRef] [Google Scholar]
- Preminger DG, Walton SR, Chapman GA. 2002. Photometric quantities for solar irradiance modeling. J Geophys Res 107: 1354. https://doi.org/10.1029/2001JA009169. [Google Scholar]
- Rast MP, Ortiz A, Meisner RW. 2008. Latitudinal variation of the solar photospheric intensity. Astrophys J 673: 1209R. https://doi.org/10.1086/524655. [CrossRef] [Google Scholar]
- Schou J, Scherrer PH, Bush RI, Wachter R, Couvidat S, et al. 2012. Design and ground calibration of the helioseismic and magnetic imager (HMI) instrument on the solar dynamics observatory (SDO). Sol Phys 275: 229S. https://doi.org/10.1007/s11207-011-9842-2. [CrossRef] [Google Scholar]
- Solanki SK, Krivova NK, Haigh JD. 2013. Solar irradiance variability and climate. ARA&A 51: 311S. https://doi.org/10.1146/annurev-astro-082812-141007. [CrossRef] [Google Scholar]
- Title A, Topka KP, Tarbell TD, Schmidt W, Balke C, et al. 1992. On the differences between Plage and Quiet Sun in the solar photosphere. Astrophys J 393: 782. https://doi.org/10.1086/171545. [CrossRef] [Google Scholar]
- Walton SR, Chapman GA, Cookson AM, Dobias JJ, Preminger DG. 1998. Processing photometric full-disk solar images. Sol Phys 179: 31. https://doi.org/10.1023/A:1005070932205. [CrossRef] [Google Scholar]
- Wenzler T, Solanki SK, Krivova NA. 2005. Can surface magnetic fields reproduce solar irradiance variations in cycles 22 and 23? A&A 432: 1057. https://doi.org/10.1051/0004-6361:20041956. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Wenzler T, Solanki SK, Krivova NA, Fröhlich C. 2006. Reconstruction of solar irradiance variations in cycles 21–23 based on surface magnetic fields. A&A 460: 583W. https://doi.org/10.1051/0004-6361:20065752. [CrossRef] [EDP Sciences] [Google Scholar]
- Willson RC, Hudson HS. 1988. Solar luminosity variations in solar cycle 21. Nature 332: 810. https://doi.org/10.1038/332810a0. [NASA ADS] [CrossRef] [Google Scholar]
- Willson RC, Hudson HS. 1991. The Sun’s luminosity over a complete solar cycle. Nature 351: 42. https://doi.org/10.1038/351042a0. [CrossRef] [Google Scholar]
- Woods TN, Harder JW, Kopp G, McCabe D, Rottman G, Ryan S, Snow M. 2021. Overview of the solar radiation and climate experiment (SORCE) seventeen-year mission. Sol Phys 296: 127. https://doi.org/10.1007/s11207-021-01869-3. [CrossRef] [Google Scholar]
- Woods TN, Harder JW, Kopp G, Snow M. 2022. Solar-cycle variability results from the solar radiation and climate experiment (SORCE) mission. Sol Phys 297: 43W. https://doi.org/10.1007/s11207-022-01980-z. [CrossRef] [Google Scholar]
- Yeo KL, Krivova NA, Solanki SK. 2014. Solar cycle variation in solar irradiance. Space Sci Rev 186: 137. https://doi.org/10.1007/s11214-014-0061-7. [CrossRef] [Google Scholar]
- Yeo KL, Solanki SK, Norris CH, Beeck B, Unruh YC, et al. 2017. Solar irradiance variability is caused by the magnetic activity on the solar surface. Phys Rev Lett 119: 091102. https://doi.org/10.1103/PhysRevLett.119.091102. [CrossRef] [Google Scholar]
- Zhao J, Lin H, Liu J, Han Y. 2019. Determination of short-period terms of total solar irradiance. J Astrophys Astr 40: 11. https://doi.org/10.1007/s12036-019-9577-2. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.