Issue |
J. Space Weather Space Clim.
Volume 8, 2018
Flares, coronal mass ejections and solar energetic particles and their space weather impacts
|
|
---|---|---|
Article Number | A09 | |
Number of page(s) | 19 | |
DOI | https://doi.org/10.1051/swsc/2017046 | |
Published online | 13 February 2018 |
Research Article
Halo coronal mass ejections during Solar Cycle 24: reconstruction of the global scenario and geoeffectiveness
1
Centre for mathematical Plasma Astrophysics (CmPA), KU Leuven,
3001
Leuven, Belgium
2
Solar-Terrestrial Center of Excellence, SIDC, Royal Observatory of Belgium,
1180
Brussels, Belgium
3
Department of Physics, University of Trieste,
34127
Trieste, Italy
4
INAF-Astronomical Observatory of Trieste,
34149
Trieste, Italy
* Corresponding author: camilla.scolini@kuleuven.be
Received:
1
June
2017
Accepted:
13
December
2017
Coronal mass ejections (CMEs), in particular Earth-directed ones, are regarded as the main drivers of geomagnetic activity. In this study, we present a statistical analysis of a set of 53 fast (V ≥ 1000 km·s−1) Earth-directed halo CMEs observed by the SOHO/LASCO instrument during the period Jan. 2009–Sep. 2015, and we then use this CME sample to test the forecasting capabilities of a new Sun-to-Earth prediction scheme for the geoeffectiveness of Earth-directed halo CMEs. First, we investigate the CME association with other solar activity features such as solar flares, active regions, and others, by means of multi-instrument observations of the solar magnetic and plasma properties, with the final aim of identifying recurrent peculiar features that can be used as precursors of CME-driven geomagnetic storms. Second, using coronagraphic images to derive the CME kinematical properties at 0.1 AU, we propagate the events to 1 AU by means of 3D global MHD simulations. In particular, we use the WSA-ENLIL+Cone model to reconstruct the propagation and global evolution of each event up to their arrival at Earth, where simulation results are compared with interplanetary CME (ICME) in-situ signatures. We then use simulation outputs upstream of Earth to predict their impact on geospace. By applying the pressure balance condition at the magnetopause and the coupling function proposed by Newell et al. [J Geophys Res: Space Phys 113 (2008)] to link upstream solar wind properties to the global Kp index, we estimate the expected magnetospheric compression and geomagnetic activity level, and compare our predictions with global data records. The analysis indicates that 82% of the fast Earth-directed halo CMEs arrived at Earth within the next 4 days. Almost the totality of them compressed the magnetopause below geosynchronous orbits and triggered a minor or major geomagnetic storm afterwards. Among them, complex sunspot-rich active regions associated with X- and M-class flares are the most favourable configurations from which geoeffective CMEs originate. The analysis of related Solar Energetic Particle (SEP) events shows that 74% of the CMEs associated with major SEPs were geoeffective, i.e. they triggered a minor to intense geomagnetic storm (Kp ≥ 5). Moreover, the SEP production is enhanced in the case of fast and interacting CMEs. In this work we present a first attempt at applying a Sun-to-Earth geoeffectiveness prediction scheme − based on 3D simulations and solar wind-geomagnetic activity coupling functions − to a statistical set of fast Earth-directed, potentially geoeffective halo CMEs. The results of the prediction scheme are promising and in good agreement with the actual data records for geomagnetic activity. However, we point out the need for future studies performing a fine-tuning of the prediction scheme, in particular in terms of the evaluation of the CME input parameters and the modelling of their internal magnetic structure.
Key words: Coronal Mass Ejections (CMEs) / geomagnetic storms / geoeffectiveness predictions / Solar Cycle 24
© C. Scolini et al., Published by EDP Sciences 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.