Open Access
Issue |
J. Space Weather Space Clim.
Volume 8, 2018
Flares, coronal mass ejections and solar energetic particles and their space weather impacts
|
|
---|---|---|
Article Number | A09 | |
Number of page(s) | 19 | |
DOI | https://doi.org/10.1051/swsc/2017046 | |
Published online | 13 February 2018 |
- Arge CN, Pizzo VJ. 2000. Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J Geophys Res 105: 10465–10480. [CrossRef] [Google Scholar]
- Burlaga LFE. 1991. Magnetic Clouds. In R. Schwenn, and E. Marsch, eds., Physics of the Inner Heliosphere II. p. 152. [Google Scholar]
- Burlaga LF, et al. 2002. Successive CMEs and complex ejecta. J Geophys Res: Space Phys 107: 1266. DOI:10.1029/2001JA000255. [Google Scholar]
- Cane HV, Lario D. 2006. An introduction to CMEs and energetic particles. Space Sci Rev 123: 45–56. [NASA ADS] [CrossRef] [Google Scholar]
- Canfield RC, et al. 1999. Sigmoidal morphology and eruptive solar activity. Geophys Res Lett 26: 627–630. [CrossRef] [Google Scholar]
- Cannon P, et al. 2013. Extreme space weather: impacts on engineered systems and infrastructure. Tech. rep., Royal Academy of Engineering, London, UK. [Google Scholar]
- Chen C, et al. 2011. Statistical study of coronal mass ejection source locations: 2. Role of active regions in CME production. J Geophys Res: Space Phys 116: A12108. [CrossRef] [Google Scholar]
- Cid C, et al. 2012. Can a halo CME from the limb be geoeffective? J Geophys Res 117. [Google Scholar]
- Cliver EW, et al. 2005. On the origins of Solar EIT waves. Astrophys J 631: 604–611. [NASA ADS] [CrossRef] [Google Scholar]
- Dierckxsens M, et al. 2015. Relationship between solar energetic particles and properties of flares and CMEs: statistical analysis of solar cycle 23 events. Sol Phys 290: 841–874. DOI:10.1007/s11207-014-0641-4. [Google Scholar]
- Dumbović M, et al. 2015. Geoeffectiveness of coronal mass ejections in the SOHO Era. Sol Phys 290: 579–612. DOI:10.1007/s11207-014-0613-8. [NASA ADS] [CrossRef] [Google Scholar]
- Emmons D, et al. 2013. Ensemble forecasting of coronal mass ejections using the WSA-ENLIL with CONED model. Space Weather 11: 95–106. DOI:10.1002/swe.20019. [CrossRef] [Google Scholar]
- Gonzalez WD, et al. 1994. What is a geomagnetic storm? J Geophys Res 99: 5771–5792. [NASA ADS] [CrossRef] [Google Scholar]
- Gopalswamy N, et al. 2001. Predicting the 1-AU arrival times of coronal mass ejections. J Geophys Res 106: 29207–29218. [CrossRef] [Google Scholar]
- Gopalswamy N, et al. 2002. Interacting coronal mass ejections and solar energetic particles. Astrophys J Lett 572: L103–L107. [Google Scholar]
- Gopalswamy N, et al. 2003. Large solar energetic particle events of cycle 23: a global view. Geophys Res Lett 30: 8015. DOI:10.1029/2002GL016435. [Google Scholar]
- Gopalswamy N, et al. 2007. Geoeffectiveness of halo coronal mass ejections. J Geophys Res 112: A06112. DOI:10.1029/2006JA012149. [Google Scholar]
- Gopalswamy N, et al. 2009. The expansion and radial speeds of coronal mass ejections. Cent Eur Astrophys Bull 33: 115–124. [Google Scholar]
- Gopalswamy N, et al. 2010. Solar sources of driverless interplanetary shocks. 12th International Solar Wind Conference 1216, pp. 452–458. DOI:10.1063/1.3395902. [Google Scholar]
- Gopalswamy N, et al. 2010. A catalog of halo coronal mass ejections from SOHO. Sun Geosph 5: 7–16. [Google Scholar]
- Gopalswamy N, et al. 2014. Anomalous expansion of coronal mass ejections during solar cycle 24 and its space weather implications. Geophys Res Lett 41: 2673–2680. DOI:10.1002/2014GL059858. [NASA ADS] [CrossRef] [Google Scholar]
- Gopalswamy N, et al. 2015a. The mild space weather in solar cycle 24. ArXiv e-prints: arXiv:1508.01603 [astro-ph.SR]. [Google Scholar]
- Gopalswamy N, et al. 2015b. The peculiar behavior of halo coronal mass ejections in solar cycle 24. Astrophys J Lett 804: L23. [Google Scholar]
- Gopalswamy N, et al. 2015c. High-energy Solar Particle Events in cycle 24. J Phys Conf Ser 642: 012012. [CrossRef] [Google Scholar]
- Gosling JT. 1993. The solar flare myth. J Geophys Res 98: 18937–18950. [Google Scholar]
- Gosling JT, et al. 1991. Geomagnetic activity associated with earth passage of interplanetary shock disturbances and coronal mass ejections. J Geophys Res 96: 7831–7839. DOI:10.1029/91JA00316. [Google Scholar]
- Hundhausen AJ, et al. 1984. Coronal mass ejections observed during the Solar Maximum Mission − Latitude distribution and rate of occurrence. J Geophys Res 89: 2639–2646. [Google Scholar]
- Huttunen K, Koskinen H. 2004. Importance of post-shock streams and sheath region as drivers of intense magnetospheric storms and high-latitude activity. Ann Geophys 22: 1729–1738. DOI:10.5194/angeo-22-1729-2004. [Google Scholar]
- Huttunen KEJ, et al. 2002. Variability of magnetospheric storms driven by different solar wind perturbations. J Geophys Res: Space Phys 107: 1121. DOI:10.1029/2001JA900171. [Google Scholar]
- Jaeggli SA, Norton AA. 2016. The magnetic classification of solar active regions 1992–2015. Astrophys J Lett 820. [Google Scholar]
- Jang S, et al. 2016. Comparison between 2D and 3D parameters of 306 front-side halo CMEs from 2009 to 2013. Astrophys J 821: 95. DOI:10.3847/0004-637X/821/2/95. [CrossRef] [Google Scholar]
- Janvier M, et al. 2014. Mean shape of interplanetary shocks deduced from in situ observations and its relation with interplanetary CMEs. Astron Astrophys 565: A99. DOI:10.1051/0004-6361/201423450. [CrossRef] [EDP Sciences] [Google Scholar]
- Jian L, et al. 2006. Properties of Stream Interactions at 1 AU During 1995-2004. Sol Phys 239: 337–392. DOI:10.1007/s11207-006-0132-3. [CrossRef] [Google Scholar]
- Jolliffe IT, Stephenson DB. 2011. Forecast verification: a practioner's guide in atmospheric science. 2nd. ed., Wiley, online library. [Google Scholar]
- Kahler SW. 2001. The correlation between solar energetic particle peak intensities and speeds of coronal mass ejections: Effects of ambient particle intensities and energy spectra. J Geophys Res 106: 20947–20956. DOI:10.1029/2000JA002231. [Google Scholar]
- Kahler SW, Vourlidas A. 2014. Do Interacting Coronal Mass Ejections Play a Role in Solar Energetic Particle Events ? Astrophys J 784: 47. DOI:10.1088/0004-637X/784/1/47. [Google Scholar]
- Kilpua EKJ, et al. 2015. Properties and drivers of fast interplanetary shocks near the orbit of the Earth: 1995-2013. J Geophys Res: Space Phys 120: 4112–4125. DOI:10.1002/2015JA021138. [Google Scholar]
- Kivelson MG, Russell CT. 1995. Introduction to space physics, Cambridge University Press, Cambridge, UK, p. 586. [Google Scholar]
- Koskinen HEJ, Huttunen KEJ. 2006. Geoeffectivity of coronal mass ejections. Space Sci Rev 124: 169–181. DOI:10.1007/s11214-006-9103-0. [Google Scholar]
- Lakshmi MA, Umapathy S. 2013. Coronal mass ejections associated with short and long duration X-ray flares. Astron Soc India Conf Series 10. [Google Scholar]
- Lemen JR, et al. 2012. The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Sol Phys 275: 17–40. [Google Scholar]
- Lepping RP, et al. 1995. The wind magnetic field investigation. Space Sci Rev 71: 207–229. [Google Scholar]
- Lugaz N, Farrugia CJ. 2014. A new class of complex ejecta resulting from the interaction of two CMEs and its expected geoeffectiveness. Geophys Res Lett 41: 769–776. DOI:10.1002/2013GL058789. [NASA ADS] [CrossRef] [Google Scholar]
- Lugaz N, et al. 2015. Extreme geomagnetic disturbances due to shocks within CMEs. Geophys Res Lett 42: 4694–4701. DOI:10.1002/2015GL064530. [CrossRef] [Google Scholar]
- Lugaz N, et al. 2016. Factors affecting the geoeffectiveness of shocks and sheaths at 1 AU. J Geophys Res: Space Phys 121: 10. DOI:10.1002/2016JA023100. [Google Scholar]
- Lugaz N, et al. 2017. The interaction of successive coronal mass ejections: a review. Sol Phys 292: 64. [NASA ADS] [CrossRef] [Google Scholar]
- McIntosh PS. 1990. The classification of sunspot groups. Sol Phys 125: 251–267. [NASA ADS] [CrossRef] [Google Scholar]
- Michalek G, Yashiro S. 2013. CMEs and active regions on the sun. Adv Space Res 52: 521–527. [Google Scholar]
- Michalek G, et al. 2006. Properties and geoeffectiveness of halo coronal mass ejections. Space Weather 4: S10003. [NASA ADS] [CrossRef] [Google Scholar]
- Mierla M, et al. 2010. On the 3-D reconstruction of Coronal Mass Ejections using coronagraph data. Ann Geophys 28: 203–215. DOI:10.5194/angeo-28-203-2010. [CrossRef] [Google Scholar]
- Möstl C, et al. 2015. Strong coronal channelling and interplanetary evolution of a solar storm up to Earth and Mars. Nat Commun 6: 7135. DOI:10.1038/ncomms8135. [CrossRef] [Google Scholar]
- Newell PT, et al. 2007. A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables. J Geophys Res: Space Phys 112. [Google Scholar]
- Newell PT, et al. 2008. Pairs of solar wind-magnetosphere coupling functions: Combining a merging term with a viscous term works best. J Geophys Res: Space Phys 113. [Google Scholar]
- O'Brien TP, McPherron RL. 2000. An empirical phase space analysis of ring current dynamics: Solar wind control of injection and decay. J Geophys Res 105: 7707–7720. [CrossRef] [Google Scholar]
- Odstrcil D. 2003. Modeling 3-D solar wind structure. Adv Space Res 32: 497–506. [NASA ADS] [CrossRef] [Google Scholar]
- Ogilvie KW, et al. 1995. SWE, A comprehensive plasma instrument for the wind spacecraft. Space Sci Rev 71: 55–77. [Google Scholar]
- Owens MJ, Forsyth RJ. 2013. The heliospheric magnetic field. Living Rev Sol Phys 10. [Google Scholar]
- Paassilta M, et al. 2017. Catalogue of 55–80 MeV solar proton events extending through solar cycles 23 and 24. J Space Weather Space Clim 7: A14. DOI:10.1051/swsc/2017013. [CrossRef] [Google Scholar]
- Palmerio E, et al. 2017. Determining the Intrinsic CME Flux Rope Type Using Remote-sensing Solar Disk Observations. Sol Phys 292: 39. DOI:10.1007/s11207-017-1063-x. [NASA ADS] [CrossRef] [Google Scholar]
- Papaioannou A, et al. 2016. Solar flares, coronal mass ejections and solar energetic particle event characteristics. J Space Weather Space Clim 6: A42. DOI:10.1051/swsc/2016035. [CrossRef] [EDP Sciences] [Google Scholar]
- Qu ZQ. 2008. Prediction of solar flares from a statistical analysis of events during solar cycle 23. ArXiv e-prints. [Google Scholar]
- Reames DV. 1999. Particle acceleration at the Sun and in the heliosphere. Space Sci Rev 90: 413–491. DOI:10.1023/A:1005105831781. [NASA ADS] [CrossRef] [Google Scholar]
- Reames DV. 2013. The two sources of solar energetic particles. Space Sci Rev 175: 53–92. [Google Scholar]
- Richardson IG. 2013. Geomagnetic activity during the rising phase of solar cycle 24. J Space Weather Space Clim 3: A08. DOI:10.1051/swsc/2013031. [CrossRef] [EDP Sciences] [Google Scholar]
- Richardson IG, Cane HV. 2010. Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996–2009): catalog and summary of properties. Sol Phys 264: 189–237. DOI:10.1007/s11207-010-9568-6. [CrossRef] [Google Scholar]
- Richardson IG, Cane HV. 2012. Solar wind drivers of geomagnetic storms during more than four solar cycles. J Space Weather Space Clim 2: A01. DOI:10.1051/swsc/2012001. [Google Scholar]
- Robbrecht E, et al. 2009. Automated LASCO CME catalog for solar cycle 23: are cmes scale invariant ? Astrophys J 691: 1222–1234. DOI:10.1088/0004-637X/691/2/1222. [CrossRef] [Google Scholar]
- Rodriguez L, et al. 2009. Three frontside full halo coronal mass ejections with a nontypical geomagnetic response. Space Weather 7: S06003. DOI:10.1029/2008SW000453. [CrossRef] [Google Scholar]
- Scherrer PH, et al. 2012. The helioseismic and magnetic imager (HMI) investigation for the solar dynamics observatory (SDO). Sol Phys 275: 207–227. [NASA ADS] [CrossRef] [Google Scholar]
- Schwenn R, et al. 2005. The association of coronal mass ejections with their effects near the earth. Ann Geophys 23: 1033–1059. [Google Scholar]
- Shen C, et al. 2014. Full-halo coronal mass ejections: arrival at the earth. J Geophys Res 119: 5107–5116. [CrossRef] [Google Scholar]
- Shiota D, Kataoka R. 2016. Magnetohydrodynamic simulation of interplanetary propagation of multiple coronal mass ejections with internal magnetic flux rope: SUSANOO-CME. Space Weather 14: 56–75. DOI:10.1002/2015SW001308. [NASA ADS] [CrossRef] [Google Scholar]
- Srivastava N, Venkatakrishnan P. 2004. Solar and interplanetary sources of major geomagnetic storms during 1996–2002. J Geophys Res: Space Phys 109: A10103. DOI:10.1029/2003JA010175. [Google Scholar]
- St Cyr OC, Webb DF. 1991. Activity associated with coronal mass ejections at solar minimum − SMM observations from 1984–1986. Sol Phys 136: 379–394. [NASA ADS] [CrossRef] [Google Scholar]
- St Cyr OC, et al. 2000. Properties of coronal mass ejections: SOHO LASCO observations from January 1996 to June 1998. J Geophys Res 105: 18169–18186. DOI:10.1029/1999JA000381. [Google Scholar]
- Subramanian P, Dere KP. 2001. Source regions of coronal mass ejections. Astrophys J 561: 372–395. [Google Scholar]
- Taktakishvili A, et al. 2009. Validation of the coronal mass ejection predictions at the earth orbit estimated by ENLIL heliosphere cone model. Space Weather 7. issn: 1542–7390. [Google Scholar]
- Temmer M, et al. 2017. Preconditioning of interplanetary space due to transient CME disturbances. Astrophys J 835: 141. DOI:10.3847/1538-4357/835/2/141. [NASA ADS] [CrossRef] [Google Scholar]
- Thernisien A, et al. 2009. Forward modeling of coronal mass ejections using STEREO/SECCHI data. Sol Phys 256: 111–130. DOI:10.1007/s11207-009-9346-5. [CrossRef] [Google Scholar]
- Toth G, Odstrcil D. 1996. Comparison of some flux corrected transport and total variation diminishing numerical schemes for hydrodynamic and magnetohydrodynamic problems. J Comput Phys 128: 82–100. [NASA ADS] [CrossRef] [Google Scholar]
- Tsurutani BT, et al. 1988. Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978–1979). J Geophys Res 93: 8519–8531. DOI:10.1029/JA093iA08p08519. [Google Scholar]
- Wang YM, et al. 2002. A statistical study on the geoeffectiveness of Earth-directed coronal mass ejections from March 1997 to December 2000. J Geophys Res: Space Phys 107: 1340. DOI:10.1029/2002JA009244. [CrossRef] [Google Scholar]
- Wang Y, et al. 2004. Deflection of coronal mass ejection in the interplanetary medium. Sol Phys 222: 329–343. DOI:10.1023/B:SOLA.0000043576.21942.aa. [NASA ADS] [CrossRef] [Google Scholar]
- Watari S. 2017. Geomagnetic storms of cycle 24 and their solar sources. Earth Plan Space 69: 70. DOI:10.1186/s40623-017-0653-z. [CrossRef] [Google Scholar]
- Webb DF, et al. 2000. Relationship of halo coronal mass ejections, magnetic clouds, and magnetic storms. J Geophys Res 105: 7491–7508. [Google Scholar]
- Weigel RS, et al. 2006. Decision theory and the analysis of rare event space weather forecasts. Space Weather 4: 05002. DOI:10.1029/2005SW000157. [CrossRef] [Google Scholar]
- Wimmer-Schweingruber RF, et al. 2006. Understanding interplanetary coronal mass ejection signatures. Report of working group B. Space Sci Rev 123: 177–216. DOI:10.1007/s11214-006-9017-x. [Google Scholar]
- Xie H, et al. 2004. Cone model for halo cmes: application to space weather forecasting. J Geophys Res: Space Phys 109: A03109. DOI:10.1029/2003JA010226. [Google Scholar]
- Yashiro S, et al. 2004. A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J Geophys Res: Space Phys 109: A07105. DOI:10.1029/2003JA010282. [CrossRef] [Google Scholar]
- Zhao XP, et al. 2002. Determination of geometrical and kinematical properties of halo coronal mass ejections using the cone model. J Geophys Res: Space Phys 107: 1223. DOI:10.1029/2001JA009143. [Google Scholar]
- Zhang J, et al. 2004. A statistical study of the geoeffectiveness of magnetic clouds during high solar activity years. J Geophys Res: Space Phys 109: A09101. DOI:10.1029/2004JA010410. [CrossRef] [Google Scholar]
- Zhang J, et al. 2007. Solar and interplanetary sources of major geomagnetic storms (Dst ≤ −100 nT) during 1996-2005. J Geophys Res: Space Phys 112: A10102. DOI:10.1029/2007JA012321. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.