Issue |
J. Space Weather Space Clim.
Volume 8, 2018
Space weather effects on GNSS and their mitigation
|
|
---|---|---|
Article Number | A20 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/swsc/2018009 | |
Published online | 27 March 2018 |
Research Article
Positioning performance of the NTCM model driven by GPS Klobuchar model parameters
German Aerospace Center (DLR), Institute of Communications and Navigation,
Kalkhorstweg 53,
17235
Neustrelitz, Germany
* Corresponding author: mainul.hoque@dlr.de
Received:
29
June
2017
Accepted:
31
January
2018
Users of the Global Positioning System (GPS) utilize the Ionospheric Correction Algorithm (ICA) also known as Klobuchar model for correcting ionospheric signal delay or range error. Recently, we developed an ionosphere correction algorithm called NTCM-Klobpar model for single frequency GNSS applications. The model is driven by a parameter computed from GPS Klobuchar model and consecutively can be used instead of the GPS Klobuchar model for ionospheric corrections. In the presented work we compare the positioning solutions obtained using NTCM-Klobpar with those using the Klobuchar model. Our investigation using worldwide ground GPS data from a quiet and a perturbed ionospheric and geomagnetic activity period of 17 days each shows that the 24-hour prediction performance of the NTCM-Klobpar is better than the GPS Klobuchar model in global average. The root mean squared deviation of the 3D position errors are found to be about 0.24 and 0.45 m less for the NTCM-Klobpar compared to the GPS Klobuchar model during quiet and perturbed condition, respectively. The presented algorithm has the potential to continuously improve the accuracy of GPS single frequency mass market devices with only little software modification.
Key words: GNSS / positioning / range error / ionospheric correction / modelling
© M.M. Hoque et al., Published by EDP Sciences 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.