Issue |
J. Space Weather Space Clim.
Volume 10, 2020
Topical Issue - Space climate: The past and future of solar activity
|
|
---|---|---|
Article Number | 50 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/swsc/2020050 | |
Published online | 14 October 2020 |
Research Article
Towards an algebraic method of solar cycle prediction
I. Calculating the ultimate dipole contributions of individual active regions
1
Department of Astronomy, Eötvös Loránd University, 1053 Budapest, Hungary
2
Department of Mathematical Sciences, Durham University, Science Laboratories, DH1 3LE Durham, UK
* Corresponding author: K.Petrovay@astro.elte.hu
Received:
28
May
2020
Accepted:
31
August
2020
We discuss the potential use of an algebraic method to compute the value of the solar axial dipole moment at solar minimum, widely considered to be the most reliable precursor of the activity level in the next solar cycle. The method consists of summing up the ultimate contributions of individual active regions to the solar axial dipole moment at the end of the cycle. A potential limitation of the approach is its dependence on the underlying surface flux transport (SFT) model details. We demonstrate by both analytical and numerical methods that the factor relating the initial and ultimate dipole moment contributions of an active region displays a Gaussian dependence on latitude with parameters that only depend on details of the SFT model through the parameter η/Δu where η is supergranular diffusivity and Δu is the divergence of the meridional flow on the equator. In a comparison with cycles simulated in the 2 × 2D dynamo model we further demonstrate that the inaccuracies associated with the algebraic method are minor and the method may be able to reproduce the dipole moment values in a large majority of cycles.
Key words: solar cycle / rogue sunspots / surface flux transport modeling
© K. Petrovay et al., Published by EDP Sciences 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.