Issue |
J. Space Weather Space Clim.
Volume 10, 2020
Topical Issue - Space climate: The past and future of solar activity
|
|
---|---|---|
Article Number | 50 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/swsc/2020050 | |
Published online | 14 October 2020 |
- Baumann I, Schmitt D, Schüssler M. 2006. A necessary extension of the surface flux transport model. A&A 446: 307–314. https://doi.org/10.1051/0004-6361:20053488. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- DeVore CR, Sheeley NR Jr, Boris JP, Young TR Jr, Harvey KL. 1985. Simulations of magnetic-flux transport in solar active regions. Sol. Phys. 102(1–2): 41–49. https://doi.org/10.1007/BF00154036. [NASA ADS] [CrossRef] [Google Scholar]
- Hathaway DH, Upton LA. 2016. Predicting the amplitude and hemispheric asymmetry of solar cycle 25 with surface flux transport. J Geophys Res (Space Phys) 121(11): 10744–10753. https://doi.org/10.1002/2016JA023190. [Google Scholar]
- Iijima H, Hotta H, Imada S. 2019. Effect of morphological asymmetry between leading and following sunspots on the prediction of solar cycle activity. Astrophys J 883(1): 24. https://doi.org/10.3847/1538-4357/ab3b04. [CrossRef] [Google Scholar]
- Jiang J, Cameron RH, Schüssler M. 2014a. Effects of the scatter in sunspot group tilt angles on the large-scale magnetic field at the solar surface. Astrophys J 791: 5. https://doi.org/10.1088/0004-637X/791/1/5. [Google Scholar]
- Jiang J, Hathaway DH, Cameron RH, Solanki SK, Gizon L, Upton L. 2014b. Magnetic flux transport at the solar surface. Space Sci Rev 186: 491–523. https://doi.org/10.1007/s11214-014-0083-1. [NASA ADS] [CrossRef] [Google Scholar]
- Jiang J, Song Q, Wang J-X, Baranyi T. 2019. Different contributions to space weather and space climate from different big solar active regions. Astrophys J 871(1): 16. https://doi.org/10.3847/1538-4357/aaf64a. [CrossRef] [Google Scholar]
- Jiang J, Wang J-X, Jiao Q-R, Cao J-B. 2018. Predictability of the solar cycle over one cycle. Astrophys J 863: 159. https://doi.org/10.3847/1538-4357/aad197. [NASA ADS] [CrossRef] [Google Scholar]
- Lemerle A, Charbonneau P. 2017. A coupled 2 × 2D Babcock-Leighton solar dynamo model. II. Reference dynamo solutions. Astrophys J 834: 133. https://doi.org/10.3847/1538-4357/834/2/133. [Google Scholar]
- Lemerle A, Charbonneau P, Carignan-Dugas A. 2015. A coupled 2 × 2D Babcock-Leighton solar dynamo model. I. Surface magnetic flux evolution. Astrophys J 810(1): 78. https://doi.org/10.1088/0004-637X/810/1/78. [Google Scholar]
- Mackay DH, Yeates AR. 2012. The Sun’s global photospheric and coronal magnetic fields: Observations and models. Living Rev Sol Phys 9(1): 6. https://doi.org/10.12942/lrsp-2012-6. [CrossRef] [Google Scholar]
- Mackay DH, Yeates AR, Bocquet F-X. 2016. Impact of an L5 magnetograph on nonpotential solar global magnetic field modeling. Astrophys J 825(2): 131. https://doi.org/10.3847/0004-637X/825/2/131. [NASA ADS] [CrossRef] [Google Scholar]
- Muñoz-Jaramillo A, Dasi-Espuig M, Balmaceda LA, DeLuca EE. 2013. Solar cycle propagation, memory, and prediction: Insights from a century of magnetic proxies. Astrophys J Lett 767: L25. https://doi.org/10.1088/2041-8205/767/2/L25. [NASA ADS] [CrossRef] [Google Scholar]
- Nagy M, Lemerle A, Labonville F, Petrovay K, Charbonneau P. 2017. The effect of “Rogue” active regions on the solar cycle. Sol Phys 292: 167. https://doi.org/10.1007/s11207-017-1194-0. [NASA ADS] [CrossRef] [Google Scholar]
- Nagy M, Petrovay K, Lemerle A, Charbonneau P. 2020. Towards an algebraic method of solar cycle prediction II. Reducing the need for detailed input data with ARDOR. J Space Weather Space Clim. This issue. https://doi.org/10.1051/swsc/2020051. [Google Scholar]
- Petrie GJD. 2015. Solar magnetism in the polar regions. Living Rev Sol Phys 12: 5. https://doi.org/10.1007/lrsp-2015-5. [Google Scholar]
- Petrovay K. 2020. Solar cycle prediction. Living Rev Sol Phys 17(1): 2. https://doi.org/10.1007/s41116-020-0022-z. [CrossRef] [Google Scholar]
- Petrovay K, Talafha M. 2019. Optimization of surface flux transport models for the solar polar magnetic field. A&A 632: A87. https://doi.org/10.1051/0004-6361/201936099. [CrossRef] [EDP Sciences] [Google Scholar]
- Schatten KH, Scherrer PH, Svalgaard L, Wilcox JM. 1978. Using dynamo theory to predict the sunspot number during solar cycle 21. Geophys Res Lett 5: 411–414. https://doi.org/10.1029/GL005i005p00411. [Google Scholar]
- Sheeley NR Jr. 2005. Surface evolution of the sun’s magnetic field: A historical review of the flux-transport mechanism. Living Rev Sol Phys 2: 5. https://doi.org/10.12942/lrsp-2005-5. [Google Scholar]
- Sheeley NR Jr, Wang Y-M, DeVore CR. 1989. Implications of a strongly peaked polar magnetic field. Sol Phys 124: 1–13. https://doi.org/10.1007/BF00146515. [NASA ADS] [CrossRef] [Google Scholar]
- Virtanen IOI, Virtanen II, Pevtsov AA, Yeates A, Mursula K. 2017. Reconstructing solar magnetic fields from historical observations. II. Testing the surface flux transport model. A&A 604: A8. https://doi.org/10.1051/0004-6361/201730415. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Wang Y-M. 2017. Surface flux transport and the evolution of the sun’s polar fields. Space Sci Rev 210: 351–365. https://doi.org/10.1007/s11214-016-0257-0. [CrossRef] [Google Scholar]
- Wang YM, Sheeley NR Jr. 1991. Magnetic flux transport and the sun’s dipole moment: New twists to the Babcock-Leighton Model. Astrophys J 375: 761. https://doi.org/10.1086/170240. [CrossRef] [Google Scholar]
- Wang Y-M, Sheeley NR. 2009. Understanding the geomagnetic precursor of the solar cycle. Astrophys J Lett 694: L11–L15. https://doi.org/10.1088/0004-637X/694/1/L11. [CrossRef] [Google Scholar]
- Whitbread T, Yeates AR, Muñoz-Jaramillo A. 2018. How many active regions are necessary to predict the solar dipole moment? Astrophys J 863(2): 116. https://doi.org/10.3847/1538-4357/aad17e. [Google Scholar]
- Whitbread T, Yeates AR, Muñoz-Jaramillo A, Petrie GJD. 2017. Parameter optimization for surface flux transport models. A&A 607: A76. https://doi.org/10.1051/0004-6361/201730689. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Yeates AR. 2020. How good is the bipolar approximation of active regions for surface flux transport? Sol Phys 295: 119. https://doi.org/10.1007/s11207-020-01688-y. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.