Issue |
J. Space Weather Space Clim.
Volume 12, 2022
|
|
---|---|---|
Article Number | 1 | |
Number of page(s) | 18 | |
DOI | https://doi.org/10.1051/swsc/2021044 | |
Published online | 06 January 2022 |
Research Article
A new climatological electron density model for supporting space weather services
Institute for Solar-Terrestrial Physics, German Aerospace Center (DLR), Kalkhorstweg 53, 17235 Neustrelitz, Germany
* Corresponding author: mainul.hoque@dlr.de
Received:
22
December
2020
Accepted:
21
November
2021
The ionosphere is the ionized part of the Earth’s atmosphere, ranging from about 60 km up to several Earth radii, whereas the upper part above about 1000 km height up to the plasmapause is usually called the plasmasphere. We present a new three-dimensional electron density model to support space weather services and mitigate propagation errors for trans-ionospheric signals. The model is developed by superposing the Neustrelitz Plasmasphere Model (NPSM) to an ionosphere model composed of separate F and E-layer distributions. It uses the Neustrelitz TEC model (NTCM), Neustrelitz Peak Density Model (NPDM), and the Neustrelitz Peak Height Model (NPHM) for the total electron content (TEC), peak ionization, and peak height information. These models describe the spatial and temporal variability of the key parameters as a function of local time, geographic/geomagnetic location, solar irradiation, and activity. The model is developed to calculate the electron concentration at any given location and time in the ionosphere for trans-ionospheric applications and named the Neustrelitz Electron Density Model (NEDM2020). A comprehensive validation study is conducted against electron density in-situ data from DMSP and Swarm, Van Allen Probes and ICON missions, and topside TEC data from COSMIC/FORMOSAT-3 mission, bottom side TEC data from TOPEX/Poseidon mission, and ground-based TEC data from International GNSS Service (IGS) covering both high and low solar activity conditions. Additionally, the model performance is compared with the 3D electron density model NeQuick2. Our investigation shows that the NEDM2020 performs better than the NeQuick2 compared with the in-situ data from Van Allen Probes and ICON satellites and TEC data from COSMIC and TOPEX/Poseidon missions. When compared with DMSP and IGS TEC data, both NEDM2020 and NeQuick2 perform very similarly.
Key words: ionosphere / plasmasphere / Neustrelitz Electron Density Model (NEDM) / NTCM / Space Weather
© M.M. Hoque et al., Published by EDP Sciences 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.