Open Access
Issue |
J. Space Weather Space Clim.
Volume 12, 2022
|
|
---|---|---|
Article Number | 1 | |
Number of page(s) | 18 | |
DOI | https://doi.org/10.1051/swsc/2021044 | |
Published online | 06 January 2022 |
- Angling MJ, Cannon PS. 2004. Assimilation of radio occultation measurements into background ionospheric models. Radio Sci 39: RS1S08. https://doi.org/10.1029/2002RS002819. [Google Scholar]
- Berdermann J, Jakowski N, Hoque MM, Hlubek N, Missling KD, Kriegel M, Borries C, Wilken V, Barkmann H, Tegler M. 2014. Ionospheric monitoring and prediction center (IMPC). In: Proc. of the 27th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2014), Tampa, Florida, 8–12 September, pp. 14–21. [Google Scholar]
- Böhm J, Salstein D, Alizadeh MM, Wijaya DD. 2013. Geodetic and atmospheric background. In: Atmospheric effects in Space Geodesy, Böhm J, Schuh H (Eds.), Springer, Berlin Heidelberg. ISBN: 978-3-642-36932-2. [CrossRef] [Google Scholar]
- Bilitza D. 2001. International Reference Ionosphere 2000. Radio Sci 36: 261–275. https://doi.org/10.1029/2000RS002432. [CrossRef] [Google Scholar]
- Bilitza D, Reinisch B. 2008. International Reference Ionosphere 2007: Improvements and new parameters. J Adv Space Res 42(4): 599–609. https://doi.org/10.1016/j.asr.2007.07.048. [CrossRef] [Google Scholar]
- Bust GS, Garner GTW, Gaussiran TL. 2004. II, Ionospheric Data Assimilation Three-Dimensional (IDA3D): A global, multisensor, electron density specification algorithm. J Geophys Res 109: A11312. https://doi.org/10.1029/2003JA010234. [CrossRef] [Google Scholar]
- Ching BK, Chiu YT. 1973. A phenomenological model of global ionospheric electron density in the E-, F1- and F2 regions. J Atmos Terr Phys 35: 1615–1630. https://doi.org/10.1016/0021-9169(73)90180-3. [CrossRef] [Google Scholar]
- Davies K. 1990. Ionospheric radio, Peter Peregrinus Ltd, London. ISBN 086341186X. [CrossRef] [Google Scholar]
- Elvidge S, Angling MJ. 2019. Using the local ensemble transform Kalman filter for upper atmospheric modelling. J Space Weather Space Clim 9: A30. https://doi.org/10.1051/swsc/2019018. [CrossRef] [EDP Sciences] [Google Scholar]
- Feltens J, Bellei G, Springer T, Kints MV, Zandbergen R, Budnik F, Schönemann E. 2018. Tropospheric and ionospheric media calibrations based on global navigation satellite system observation data. J Space Weather Space Clim 8: A30. https://doi.org/10.1051/swsc/2018016. [CrossRef] [EDP Sciences] [Google Scholar]
- Foelsche U, Kirchengast G. 2002. A simple “geometric” mapping function for the hydrostatic delay at radio frequencies and assessment of its performance. Geophys Res Lett 29: 1473. https://doi.org/10.1029/2001GL013744. [Google Scholar]
- Hairston MR, Heelis RA. 1996. Analysis of ionospheric parameters based on DMSP SSIES data using the DBASE4 and NADIA programs, Rep. PL‐TR‐96‐2078, Phillips Lab., Geophys. Dir., Hanscom Air Force Base, Mass. [Google Scholar]
- Hairston MR, Heelis RA, Rich FJ. 1998. Analysis of the ionospheric cross polar cap potential drop using DMSP data during the National Space Weather Program study period. J Geophys Res 103(26): 337. https://doi.org/10.1029/97ja03241. [Google Scholar]
- Heelis RA, Stoneback RA, Perdue MD, et al. 2017. Ion velocity measurements for the ionospheric connections explorer. Space Sci Rev 212: 615–629. https://doi.org/10.1007/s11214-017-0383-3. [CrossRef] [Google Scholar]
- Hervás M, Bergadà P, Alsina-Pagès RM. 2020. Ionospheric narrowband and wideband HF soundings for communications purposes: A review. Sensors 20(9): 2486. https://doi.org/10.3390/s20092486. [CrossRef] [Google Scholar]
- Hoque MM, Jakowski N. 2008. Estimate of higher order ionospheric errors in GNSS positioning. Radio Sci 43: RS5008. https://doi.org/10.1029/2007RS003817. [Google Scholar]
- Hoque MM, Jakowski N. 2011. A new global empirical NmF2 model for operational use in radio systems. Radio Sci 46: RS6015. https://doi.org/10.1029/2011RS004807. [Google Scholar]
- Hoque MM, Jakowski N. 2012. A new global model for the ionospheric F2 peak height for radio wave propagation. Ann Geophys 30: 797–809. https://doi.org/10.5194/angeo-30-797-2012. [CrossRef] [Google Scholar]
- Hoque MM, Jakowski N. 2015. An alternative ionospheric correction model for Global Navigation Satellite Systems. J Geod 89: 391–406. https://doi.org/10.1007/s00190-014-0783-z. [CrossRef] [Google Scholar]
- Hoque MM, Jakowski N, Berdermann J. 2018. Positioning performance of the NTCM model driven by GPS Klobuchar model parameters. J Space Weather Space Clim 8: A18. https://doi.org/10.1051/swsc/2018009. [Google Scholar]
- Hoque MM, Jakowski N. 2013. Mitigation of ionospheric mapping function error. In: Proc. of the 26th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2013). Nashville, TN, 16–20 September, pp. 1848–1855. [Google Scholar]
- Garner TW, Taylor BT, Gaussiran TL II, Coley WR, Hairston MR, Rich FJ. 2010. Statistical behavior of the topside electron density as determined from DMSP observations: A probabilistic climatology. J Geophys Res 115: A07306. https://doi.org/10.1029/2009JA014695. [Google Scholar]
- Ho CM, Wilson BD, Mannucci AJ, Lindqwister UJ, Yuan DN. 1995. A comparative study of ionospheric total electron content measurements using global ionospheric maps of GPS, TOPEX radar, and the Bent model. Radio Sci 32(4): 1499–1512. https://doi.org/10.1029/97RS00580. [Google Scholar]
- Immel TJ, England SL, Mende SB, et al. 2018. The Ionospheric Connection Explorer Mission: Mission goals and design. Space Sci Rev 214: 13. https://doi.org/10.1007/s11214-017-0449-2. [CrossRef] [Google Scholar]
- Jakowski N, Hoque MM. 2018. A new electron density model of the plasmasphere for operational applications and services. J Space Weather Space Clim 2018(8): A16. https://doi.org/10.1051/swsc/2018002. [CrossRef] [EDP Sciences] [Google Scholar]
- Jakowski N, Stankov SM, Klaehn D. 2005. Operational space weather service for GNSS precise positioning. Ann Geophys 23: 3071–3079. https://doi.org/10.5194/angeo-23-3071-2005. [CrossRef] [Google Scholar]
- Jakowski N, Hoque MM, Mayer C. 2011a. A new global TEC model for estimating transionospheric radio wave propagation errors. J Geod 85: 965–974. https://doi.org/10.1007/s00190-011-0455-1. [CrossRef] [Google Scholar]
- Jakowski NC, Mayer C, Hoque MM, Wilken V. 2011b. TEC models and their use in ionosphere monitoring. Radio Sci 46(6). https://doi.org/10.1029/2010RS004620. [CrossRef] [Google Scholar]
- Jee G, Schunk RW, Scherliess L. 2004. Analysis of TEC data from the TOPEX/Poseidon mission. J Geophys Res 109: A01301. https://doi.org/10.1029/2003JA010058. [Google Scholar]
- Kashcheyev A, Nava B. 2019. Validation of NeQuick 2 model topside ionosphere and plasmasphere electron content using COSMIC POD TEC. J Geophys Res: Space Phys 124: 9525–9536. https://doi.org/10.1029/2019JA026971. [CrossRef] [Google Scholar]
- Klobuchar J. 1987. Ionospheric time-delay algorithm for single frequency GPS users. IEEE Trans Aerosp Electron Syst 23: 325–332. https://doi.org/10.1109/TAES.1987.310829. [CrossRef] [Google Scholar]
- Knudsen DJ, Burchill JK, Buchert SC, Eriksson AI, Gill R, Wahlund J-E, Åhlen L, Smith M, Moffat B. 2017. Thermal ion imagers and Langmuir probes in the Swarm electric field instruments. J Geophys Res Space Phys 122: 2655–2673. https://doi.org/10.1002/2016JA022571. [CrossRef] [Google Scholar]
- Lomidze L, Knudsen DJ, Burchill J, Kouznetsov A, Buchert SC. 2018. Calibration and validation of swarm plasma densities and electron temperatures using ground-based radars and satellite radio occultation measurements. Radio Sci 2018(53): 15–36. https://doi.org/10.1002/2017RS006415. [CrossRef] [Google Scholar]
- Maltseva OA, Mozhaeva NS, Poltavsky OS, Zhbankov GA. 2012. Use of TEC global maps and the IRI model to study ionospheric response to geomagnetic disturbances. Adv Space Res 49: 1076–1087. https://doi.org/10.1016/j.asr.2012.01.005. [CrossRef] [Google Scholar]
- Migoya Orué YO, Radicella SM, Coïsson P, Ezquer RG, Nava B. 2008. Comparing TOPEX TEC measurements with IRI predictions. Adv Space Res 42(4): 757–762. https://doi.org/10.1016/j.asr.2007.09.041. [CrossRef] [Google Scholar]
- Nava B, Coisson P, Radicella SM. 2008. A new version of the NeQuick ionosphere electron density model. J Atmos Terr Phys (JASTP) 70(15): 1856–1862. https://doi.org/10.1016/j.jastp.2008.01.015. [CrossRef] [Google Scholar]
- Prol FS, Hoque MM, Ferreira AA. 2021. Plasmasphere and topside ionosphere reconstruction using METOP satellite data during geomagnetic storms. J Space Weather Space Clim 11: 5. https://doi.org/10.1051/swsc/2020076. [CrossRef] [EDP Sciences] [Google Scholar]
- Rishbeth H, Garriott OK. 1969. Introduction to ionospheric physics, Academic Press, New York. ISBN 13: 978-0125889407. [Google Scholar]
- Orús-Perez R, Hernandez-Pajares M, Juan JM, Sanz J, Garcı́a-Fernández M.. 2002. Performance of different TEC models to provide GPS ionospheric corrections. J Atmos Solar-Terr Phys 64(18): 2055–2062. https://doi.org/10.1016/S1364-6826(02)00224-9. [CrossRef] [Google Scholar]
- Orús Perez R, Parro-Jimenez J, Prieto-Cerdeira R. 2018. Status of NeQuick G after the solar maximum of cycle 24. Radio Sci 2018(53): 257–268. https://doi.org/10.1002/2017RS006373. [CrossRef] [Google Scholar]
- Schaer S, Beutler G, Rothacher M. 1998a. Mapping and Predicting the Ionosphere. In: Proceedings of the 1998 IGS Analysis Center Workshop, February 9–11, Darmstadt, Dow JM, Kouba J, Springer T (Eds.), ESA/ESOC, Darmstadt, pp. 307–318. [Google Scholar]
- Schaer S, Gurtner W, Feltens J. 1998b. IONEX: The IONosphere Map EXchange Format Version 1. In: Proceedings of the IGS AC Workshop, February 9–11, Darmstadt, Germany, Dow JM, Kouba J, Springer T (Eds.), ESA/ESOC, Darmstadt. [Google Scholar]
- Sezen U, Sahin O, Arikan F, Arikan O. 2013. Estimation of hmF2 and foF2 communication parameters of ionosphere F2-layer using GPS data and IRI-Plas model. IEEE Trans Antennas Propag 61: 5264–5273. https://doi.org/10.1109/TAP.2013.2275153. [CrossRef] [Google Scholar]
- Shaikh MM, Nava B, Haralambous H. 2018. On the use of topside RO-derived electron density for model validation. J Geophys Res: Space Phys 123: 3943–3954. https://doi.org/10.1029/2017JA025132. [CrossRef] [Google Scholar]
- Schunk RW, Scherliess L, Sojka JJ, Thompson D. 2004. Global assimilation of ionospheric measurements (GAIM). Radio Sci 39: RS1S02. https://doi.org/10.1029/2002RS002794. [Google Scholar]
- Sojka JJ. 1989. Global-scale physical model of the F region ionosphere. Rev Geophys 27: 371. https://doi.org/10.1029/RG027i003p00371. [CrossRef] [Google Scholar]
- Themens DR, Reid B, McCaffrey AM, Jayachandran PT. 2020. The Assimilation Canadian High Arctic Ionospheric Model (A-CHAIM): Implementation, workflow, and performance, Technical Report, University of New Brunswick, PSPC Contract Number: W7714-186507/001/SS (https://cradpdf.drdc-rddc.gc.ca/PDFS/unc342/p811829_A1b.pdf). [Google Scholar]
- Yuan Y, Wang N, Li Z, Huo X. 2019. The BeiDou global broadcast ionospheric delay correction model (BDGIM) and its preliminary performance evaluation results. NAVIGATION 66: 55–69. https://doi.org/10.1002/navi.292. [CrossRef] [Google Scholar]
- Yuan L, Jin S, Hoque MM. 2020. Estimation of LEO-GPS receiver differential code bias based on inequality constrained least square and multi-layer mapping function. GPS Solut 24: 57. https://doi.org/10.1007/s10291-020-0970-8. [CrossRef] [Google Scholar]
- Yue X, Schreiner WS, Hunt DC, Rocken C, Kuo Y-H. 2011. Quantitative evaluation of the low Earth orbit satellite based slant total electron content determination. Space Weather 9: S09001. https://doi.org/10.1029/2011SW000687. [Google Scholar]
- Zhelavskaya IS, Spasojevic M, Shprits YY, Kurth WS. 2016. Automated determination of electron density from electric field measurements on the Van Allen Probes spacecraft. J Geophys Res Space Phys 121: 4611–4625. https://doi.org/10.1002/2015JA022132. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.