Issue |
J. Space Weather Space Clim.
Volume 12, 2022
Topical Issue - Ionospheric plasma irregularities and their impact on radio systems
|
|
---|---|---|
Article Number | 26 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/swsc/2022021 | |
Published online | 08 July 2022 |
Research Article
Growin: Modeling ionospheric instability growth rates
1
Catholic University of America, Washington, DC 20064, USA
2
NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
* Corresponding author: jonsmith8902@gmail.com
Received:
11
February
2022
Accepted:
30
May
2022
Seasonal and zonal climatologies of Rayleigh–Taylor growth rates under geomagnetically quiet conditions during solar minimum and solar moderate conditions as a function of local time and altitude are calculated using open source data and software. It is under the action of the Rayleigh–Taylor instability that plumes of depleted plasma, or plasma bubbles, are understood to develop in the bottomside of the equatorial ionosphere. The growin python module utilizes other Heliophysics python modules to collate and process vertical plasma drift to drive the SAMI2 is Another Model of the Ionosphere (SAMI2) model and subsequently calculate the flux tube integrated Rayleigh–Taylor growth rate. The process is repeated for two different types of drift inputs: the Fejer–Scherliess model and measured drifts from the Communication/Navigation Outage Forecasting System (C/NOFS). These growth rates are compared to bubble occurrence frequencies obtained from a dataset of bubbles detected by the C/NOFS satellite. There is an agreement between periods of strong positive instability growth and high frequencies of bubble occurrence in both low and moderate solar activity conditions when using C/NOFS drifts. Fejer–Scherliess drifts are only in agreement with bubble occurrence frequencies during moderate solar activity conditions. Bubble occurrence frequencies are often above 25%, even when growth rates in the bottomside F region are negative. The climatological nature of the growth rates discussed here begs further study into the day-to-day variability of the growth rate and its drivers.
Key words: ionospheric irregularities / plasma bubbles / Rayleigh–Taylor growth-rate
© J.M Smith & J. Klenzing, Published by EDP Sciences 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.