Issue |
J. Space Weather Space Clim.
Volume 12, 2022
Topical Issue - Ionospheric plasma irregularities and their impact on radio systems
|
|
---|---|---|
Article Number | 26 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/swsc/2022021 | |
Published online | 08 July 2022 |
- Ajith KK, Tulasi Ram S, Yamamoto M, Otsuka Y, Niranjan K. 2016. On the fresh development of equatorial plasma bubbles around the midnight hours of June solstice. J Geophys Res: Space Phys 121(9): 9051–9062. https://doi.org/10.1002/2016JA023024, https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2016JA023024, URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016JA023024. [CrossRef] [Google Scholar]
- Bilitza D. 2018. IRI the International Standard for the Ionosphere. Adv Radio Sci 16: 1–11. https://doi.org/10.5194/ars-16-1-2018, URL https://ars.copernicus.org/articles/16/1/2018/. [CrossRef] [Google Scholar]
- Burke WJ. 2004. Longitudinal variability of equatorial plasma bubbles observed by DMSP and ROCSAT-1. J Geophys Res 109(A12): A12,301. https://doi.org/10.1029/2004JA010583, URL http://doi.wiley.com/10.1029/2004JA010583. [CrossRef] [Google Scholar]
- Burrell AG, Halford A, Klenzing J, Stoneback RA, Morley SK, Annex AM, Laundal KM, Kellerman AC, Stansby D, Ma J. 2018. Snakes on a spaceship – an overview of python in heliophysics. J Geophys Res: Space Phys 123(12): 10384–10402. https://doi.org/10.1029/2018JA025877, https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2018JA025877, URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018JA025877. [CrossRef] [Google Scholar]
- Carter BA, Yizengaw E, Retterer JM, Francis M, Terkildsen M, Marshall R, Norman R, Zhang K. 2014. An analysis of the quiet time day-to-day variability in the formation of postsunset equatorial plasma bubbles in the Southeast Asian region. J Geophys Res: Space Phys 119(4): 3206–3223. https://doi.org/10.1002/2013JA019570. [CrossRef] [Google Scholar]
- Carter BA, Currie JL, Dao T, Yizengaw E, Retterer J, Terkildsen M, Groves K, Caton R. 2020. On the assessment of daily equatorial plasma bubble occurrence modeling and forecasting. Space Weather 18(9): e2020SW002,555. https://doi.org/10.1029/2020SW002555, https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2020SW002555, URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020SW002555. [CrossRef] [Google Scholar]
- Coley WR, Hairston M, Heelis RA. 2017. CINDI Ivm quality flag description. URL https://spdf.gsfc.nasa.gov/pub/data/cnofs/cindi/. [Google Scholar]
- Drob DP, Emmert JT, Meriwether JW, Makela JJ, Doornbos E, et al. 2015. An update to the horizontal wind model (HWM): The quiet time thermosphere. Earth Space Sci 2(7): 301–319. https://doi.org/10.1002/2014EA000089, https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2014EA000089, URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2014EA000089. [CrossRef] [Google Scholar]
- Dubazane MB, Habarulema JB, Uwamahoro JC. 2018. Modelling ionospheric vertical drifts over Africa low latitudes using Empirical Orthogonal functions and comparison with climatological model. Adv Space Res 61(1): 326–336. https://doi.org/10.1016/j.asr.2017.10.024, URL https://www.sciencedirect.com/science/article/pii/S0273117717307627. [CrossRef] [Google Scholar]
- Fejer BG, Scherliess L, de Paula ER. 1999. Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F. J Geophys Res: Space Phys 104(A9): 19,859–19,869. https://doiorg/10.1029/1999JA900271. [Google Scholar]
- Gentile LC, Burke WJ, Rich FJ. 2006. A climatology of equatorial plasma bubbles from DMSP 1989–2004. Radio Sci 41(5): 1–7. https://doi.org/10.1029/2005RS003340. [Google Scholar]
- Haerendel G, Eccles JV. 1992. The role of the equatorial electrojet in the evening ionosphere. J Geophys Res: Space Phys 97(A2): 1181–1192. https://doi.org/10.1029/91JA02227, https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/91JA02227, URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/91JA02227. [CrossRef] [Google Scholar]
- Huba JD, Bernhardt PA, Ossakow SL, Zalesak ST. 1996. The Rayleigh-Taylor instability is not damped by recombination in the F region. J Geophys Res: Space Phys 101(A11): 24553–24556. https://doi.org/10.1029/96JA02527, https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/96JA02527, URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/96JA02527. [CrossRef] [Google Scholar]
- Huba JD, Joyce G, Fedder JA. 2000. Sami2 is another model of the ionosphere (SAMI2): A new low-latitude ionosphere model. J Geophys Res: Space Phys 105(A10): 23035–23053. https://doi.org/10.1029/2000JA000035, https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2000JA000035, URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2000JA000035. [CrossRef] [Google Scholar]
- Keskinen MJ, Ossakow SL, Basu S, Sultan PJ. 1998. Magnetic-flux-tube-integrated evolution of equatorial ionospheric plasma bubbles. J Geophys Res: Space Phys 103(A3): 3957–3967. https://doi.org/10.1029/97JA02192, https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/97JA02192, URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/97JA02192. [CrossRef] [Google Scholar]
- Klenzing J, Burrell AG, Heelis RA, Huba JD, Pfaff R, Simões F. 2013. Exploring the role of ionospheric drivers during the extreme solar minimum of 2008. Ann Geophys 31(12): 2147–2156. https://doi.org/10.5194/angeo-31-2147-2013, URL https://www.ann-geophys.net/31/2147/2013/. [CrossRef] [Google Scholar]
- Klenzing J, Smith J, Michael Hirsch P. 2019. sami2py/sami2py: Version 0.2.0 – Support for xarray. URL https://doi.org/10.5281/zenodo.3581453. [Google Scholar]
- Krall J, Huba JD, Ossakow SL, Joyce G. 2010. Why do equatorial ionospheric bubbles stop rising? Geophys Res Lett 37(9): L09105. https://doi.org/10.1029/2010GL043128, https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2010GL043128, URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2010GL043128. [Google Scholar]
- Liu G, Immel TJ, England SL, Frey HU, Mende SB, Kumar KK, Ramkumar G. 2013. Impacts of atmospheric ultrafast Kelvin waves on radio scintillations in the equatorial ionosphere. J Geophys Res: Space Phys 118(2): 885–891. https://doi.org/10.1002/jgra.50139. [CrossRef] [Google Scholar]
- Martinis C, Daniell R, Eastes R, Norrell J, Smith J, Klenzing J, Solomon S, Burns A. 2021. Longitudinal variation of postsunset plasma depletions from the global-scale observations of the limb and disk (GOLD) mission. J Geophys Res: Space Phys 126(2): e2020JA028,510. https://doi.org/10.1029/2020JA028510, https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2020JA028510, URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020JA028510. [CrossRef] [Google Scholar]
- Ossakow SL. 1981. Spread-F theories – a review. J Atmos Terr Phys 43(5): 437–452. Equatorial Aeronomy – I, https://doi.org/10.1016/0021-9169(81)90107-0, URL http://www.sciencedirect.com/science/article/pii/0021916981901070. [CrossRef] [Google Scholar]
- Oyekola O, Kolawole L. 2010. Equatorial vertical E × B drift velocities inferred from ionosonde measurements over Ouagadougou and the IRI-2007 vertical ion drift model. Adv Space Res 46(5): 604–612. https://doi.org/10.1016/j.asr.2010.04.003, URL https://www.sciencedirect.com/science/article/pii/S0273117710002371. [CrossRef] [Google Scholar]
- Picone JM, Hedin AE, Drob DP, Aikin AC. 2002. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J Geophys Res: Space Phys 107(A12): 1–16. https://doi.org/10.1029/2002JA009430. [Google Scholar]
- Retterer JM, Roddy P. 2014. Faith in a seed: On the origins of equatorial plasma bubbles. Ann Geophys 32(5): 485–498. https://doi.org/10.5194/angeo-32-485-2014, URL https://www.ann-geophys.net/32/485/2014/. [CrossRef] [Google Scholar]
- Richards PG, Fennelly JA, Torr DG. 1994. Correction to “EUVAC: A solar EUV flux model for aeronomic calculations”. J Geophys Res 99(A7): 13,283. https://doi.org/10.1029/94ja01446. [Google Scholar]
- Saranya P, Prasad D, Rama Rao P. 2014. Ionospheric vertical drifts over an Indian low latitude station and its comparison with IRI-2007 vertical drift model. Adv Space Res 54(6): 946–954. https://doi.org/10.1016/j.asr.2014.05.026, URL https://www.sciencedirect.com/science/article/pii/S0273117714003172. [CrossRef] [Google Scholar]
- Shidler SA, Rodrigues FS. 2019. On the magnitude and variability of height gradients in the equatorial F region vertical plasma drifts. J Geophys Res: Space Phys 124(6): 4916–4925. https://doi.org/10.1029/2019JA026661, https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2019JA026661, URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019JA026661. [CrossRef] [Google Scholar]
- Smith J, Heelis RA. 2017. Equatorial plasma bubbles: Variations of occurrence and spatial scale in local time, longitude, season, and solar activity. J Geophys Res: Space Phys 70(4): 360. https://doi.org/10.1002/2017JA024128. [Google Scholar]
- Smith J, Heelis RA. 2018a. Plasma dynamics associated with equatorial ionospheric irregularities. Geophys Res Lett 45(16): 7927–7932. https://doi.org/10.1029/2018GL078560, https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2018GL078560, URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018GL078560. [CrossRef] [Google Scholar]
- Smith J, Heelis RA. 2018b. The plasma environment associated with equatorial ionospheric irregularities. J Geophys Res: Space Phys 123(2): 1583–1592. https://doi.org/10.1002/2017JA024933. [CrossRef] [Google Scholar]
- Smith J, Heelis RA. 2020. Rolling Ball CNOFS bubbles. https://doi.org/10.5281/zenodo.3569967. [Google Scholar]
- Smith J, Klenzing J. 2020. JonathonMSmith/growin: Beta. https://doi.org/10.5281/zenodo.3678866. [Google Scholar]
- Stoneback RA, Heelis RA, Burrell AG, Coley WR, Fejer BG, Pacheco E. 2011. Observations of quiet time vertical ion drift in the equatorial ionosphere during the solar minimum period of 2009. J Geophys Res: Space Phys 116(12): 1–11. https://doi.org/10.1029/2011JA016712. [Google Scholar]
- Stoneback RA, Burrell AG, Klenzing J, Depew MD. 2018. PYSAT: Python satellite data analysis toolkit. J Geophys Res: Space Phys 123(6): 5271–5283. https://doi.org/10.1029/2018JA025297, https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2018JA025297, URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018JA025297. [CrossRef] [Google Scholar]
- Stoneback R, Klenzing J, Burrell A, Spence C, Depew M, NHargrave, Vvonbose, Luis S, Gayatri. 2019. rstoneback/pysat v2.0. https://doi.org/10.5281/zenodo.3321222. [Google Scholar]
- Sultan PJ. 1996. Linear theory and modeling of the Rayleigh-Taylor instability leading to the occurrence of equatorial spread F. J Geophys Res: Space Phys 101(A12): 26875–26891. https://doi.org/10.1029/96JA00682. [CrossRef] [Google Scholar]
- Thébault E, Finlay CC, Beggan CD, Alken P, Aubert J, et al. 2015. International geomagnetic reference field: The 12th generation international geomagnetic reference field – The twelfth generation. Earth Planets Space 67(1): 79. https://doi.org/10.1186/s40623-015-0228-9. [CrossRef] [Google Scholar]
- Tsunoda RT. 1985. Control of the seasonal and longitudinal occurrence of equatorial scintillations by the longitudinal gradient in integrated E-region pedersen conductivity. J Geophys Res: Space Phys 90(NA1): 447–456. https://doi.org/10.1029/JA090iA01p00447. [CrossRef] [Google Scholar]
- Wu Q. 2015. Longitudinal and seasonal variation of the equatorial flux tube integrated Rayleigh-Taylor instability growth rate. J Geophys Res: Space Phys 120: 7952–7957. https://doi.org/10.1002/2015JA021553-T, https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2015JA021553-T, URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015JA021553-T. [CrossRef] [Google Scholar]
- Yizengaw E, Moldwin MB, Zesta E, Biouele CM, Damtie B, Mebrahtu A, Rabiu B, Valladares CF, Stoneback R. 2014. The longitudinal variability of equatorial electrojet and vertical drift velocity in the African and American sectors. Ann Geophys 32(3): 231–238. https://doi.org/10.5194/angeo-32-231-2014, URL https://angeo.copernicus.org/articles/32/231/2014/. [CrossRef] [Google Scholar]
- Yokoyama T, Shinagawa H, Jin H. 2014. Nonlinear growth, bifurcation, and pinching of equatorial plasma bubble simulated by three-dimensional high-resolution bubble model. J Geophys Res: Space Phys 119(12): 10474–10482. https://doi.org/10.1002/2014JA020708. [CrossRef] [Google Scholar]
- Zhan W, Rodrigues F. 2018. June solstice equatorial spread F in the American sector: A numerical assessment of linear stability aided by incoherent scatter radar measurements. J Geophys Res: Space Phys 123(1): 755–767. https://doi.org/10.1002/2017JA024969, https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2017JA024969, URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017JA024969. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.