Issue |
J. Space Weather Space Clim.
Volume 13, 2023
Topical Issue - Space Climate: Long-term effects of solar variability on the Earth’s environment
|
|
---|---|---|
Article Number | 25 | |
Number of page(s) | 16 | |
DOI | https://doi.org/10.1051/swsc/2023024 | |
Published online | 11 October 2023 |
Research Article
Prediction of even and odd sunspot cycles
Space Physics and Astronomy Research Unit, University of Oulu, PO Box 3000, 90014 Oulu, Finland
* Corresponding author: timo.asikainen@oulu.fi
Received:
23
March
2023
Accepted:
7
September
2023
Here we study the prediction of even and odd numbered sunspot cycles separately, thereby taking into account the Hale cyclicity of solar magnetism. We first show that the temporal evolution and shape of all sunspot cycles are extremely well-described by a simple parameterized mathematical expression. We find that the parameters describing even sunspot cycles can be predicted quite accurately using the sunspot number 41 months prior to sunspot minimum as a precursor. We find that the parameters of the odd cycles can be best predicted with maximum geomagnetic aa index close to the fall equinox within a 3-year window preceding the sunspot minimum. We use the found precursors to predict all previous sunspot cycles and evaluate the performance with a cross-validation methodology, which indicates that each past cycle is very accurately predicted. For the coming sunspot cycle 25 we predict an amplitude of 171 ± 23 and the end of the cycle in September 2029 ± 1.9 years. We are also able to make a rough prediction for cycle 26 based on the predicted cycle 25. While the uncertainty for the cycle amplitude is large we estimate that the cycle 26 will most likely be stronger than cycle 25. These results suggest an increasing trend in solar activity for the next decades.
Key words: Sunspot cycle / Solar activity / Solar cycle prediction
© T. Asikainen & J Mantere, Published by EDP Sciences 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.