Open Access
Issue |
J. Space Weather Space Clim.
Volume 13, 2023
Topical Issue - Space Climate: Long-term effects of solar variability on the Earth’s environment
|
|
---|---|---|
Article Number | 25 | |
Number of page(s) | 16 | |
DOI | https://doi.org/10.1051/swsc/2023024 | |
Published online | 11 October 2023 |
- Abreu JA, Beer J, Steinhilber F, Tobias SM, Weiss NO. 2008. For how long will the current grand maximum of solar activity persist? Geophys Res Lett 35(20): L20109. https://doi.org/10.1029/2008GL035442. [Google Scholar]
- Babcock H. 1961. The topology of the Suns magnetic field and the 22-year cycle. Astrophys J 133: 572. https://doi.org/10.1086/147060. [CrossRef] [Google Scholar]
- Bame SJ, Asbridge JR, Feldman WC, Gosling JT. 1976. Solar cycle evolution of high-speed solar wind streams. Astrophys J 207: 977–980. https://doi.org/10.1086/154566. [CrossRef] [Google Scholar]
- Bhowmik P, Nandy D. 2018. Prediction of the strength and timing of sunspot cycle 25 reveal decadal-scale space environmental conditions. Nat Commun 9(1): 5209. https://doi.org/10.1038/s41467-018-07690-0. [CrossRef] [Google Scholar]
- Cameron R, Schüssler M. 2007. Solar cycle prediction using precursors and flux transport models. Astrophys J 659(1): 801–811. https://doi.org/10.1086/512049. [CrossRef] [Google Scholar]
- Chapman SC, McIntosh SW, Leamon RJ, Watkins NW. 2021. The sun’s magnetic (Hale) cycle and 27 day recurrences in the aa geomagnetic index. Astrophys J 917: 54. https://doi.org/10.3847/1538-4357/ac069e. [CrossRef] [Google Scholar]
- Charbonneau P. 2020. Dynamo models of the solar cycle. Living Rev Sol Phys 17: 4. https://doi.org/10.1007/s41116-020-00025-6. [CrossRef] [Google Scholar]
- Chernosky EJ. 1966. Double sunspot-cycle variation in terrestrial magnetic activity, 1884–1963. J Geophys Res 71(3): 965–974. https://doi.org/10.1029/JZ071i003p00965. [CrossRef] [Google Scholar]
- Dikpati M, Gilman PA, de Toma G. 2008. The Waldmeier effect: an artifact of the definition of Wolf sunspot number? Astrophys J 673(1): L99. https://doi.org/10.1086/527360. [CrossRef] [Google Scholar]
- Du Z. 2020. Predicting the amplitude of solar cycle 25 using the value 39 months before the solar minimum. Sol Phys 295: 147. https://doi.org/10.1007/s11207-020-01720-1. [CrossRef] [Google Scholar]
- Du Z. 2022a. Comparing the correlations between solar cycle parameters in the northern and southern hemispheres. Sol Phys 297: 70. https://doi.org/10.1007/s11207-022-02005-5. [CrossRef] [Google Scholar]
- Du Z. 2022b. Predicting the maximum amplitude of solar cycle 25 using the early value of the rising phase. Sol Phys 297: 61. https://doi.org/10.1007/s11207-022-01991-w. [CrossRef] [Google Scholar]
- Du ZL, Li R, Wang HN. 2012. The predictive power of Ohl’s precursor method. Astrophys J 138: 1998. https://doi.org/10.1088/0004-6256/138/6/1998. [Google Scholar]
- Frohlich C. 2012. Total solar irradiance observations. Surv Geophys 33: 453–473. https://doi.org/10.1007/s10712-011-9168-5. [CrossRef] [Google Scholar]
- Gnevyshev M, Ohl A. 1948. On the 22-year cycle of solar activity. Astron Zh 25: 18–20. [Google Scholar]
- Gray LJ, Beer J, Geller M, Haigh JD, Lockwood M, et al. 2010. Solar influences on climate. Rev Geophys 48(4): RG4001. https://doi.org/10.1029/2009RG000282. [Google Scholar]
- Hathaway D. 2009. Solar cycle forecasting. Space Sci Rev 144: 402–412. https://doi.org/10.1007/s11214-008-9430-4. [Google Scholar]
- Hathaway D, Wilson R, Reichmann E. 1994. The shape of the sunspot cycle. Sol Phys 151: 177–190. https://doi.org/10.1007/BF00654090. [CrossRef] [Google Scholar]
- Hiltula T, Mursula K. 2006. Long dance of the bashful ballerina. Geophysical Research Letters 33(3): L03105. https://doi.org/10.1029/2005GL025198. [CrossRef] [Google Scholar]
- Hiltula T, Mursula K. 2007. HMF sectors since 1926: comparison of two ground-based data sets. Adv Space Res 40(7): 1054–1059. https://doi.org/10.1016/j.asr.2007.01.068. [CrossRef] [Google Scholar]
- Kakad B, Kakad A. 2021. Forecasting peak smooth sunspot number of solar cycle 25: a method based on even-odd pair of solar cycle. Planet Space Sci 209: 105359. https://doi.org/10.1016/j.pss.2021.105359. [CrossRef] [Google Scholar]
- Karak B. 2023. Models for the long-term variations of solar activity. Living Rev Sol Phys 20: 3. https://doi.org/10.1007/s41116-023-00037-y. [CrossRef] [Google Scholar]
- Karak BB, Choudhuri AR. 2011. The Waldmeier effect and the flux transport solar dynamo. Mon Notices Royal Astron Soc 410(3): 1503–1512. https://doi.org/10.1111/j.1365-2966.2010.17531.x. [Google Scholar]
- Karak BB, Mandal S, Banerjee D. 2018. Double peaks of the solar cycle: an explanation from a dynamo model. Astrophys J 866(1): 17. https://doi.org/10.3847/1538-4357/aada0d. [CrossRef] [Google Scholar]
- Krieger AS, Timothy AF, Roelof EC. 1973. A coronal hole and it’s identification as the source of a high velocity solar wind stream. Sol Phys 29: 505–525. https://doi.org/10.1007/BF00150828. [CrossRef] [Google Scholar]
- Krivova N, Solanki S, Unruh Y. 2011. Towards a long-term record of solar total and spectral irradiance. J Atmos Sol Terr Phys 73(2): 223–234. https://doi.org/10.1016/j.jastp.2009.11.013. [CrossRef] [Google Scholar]
- Kumar P, Biswas A, Karak BB. 2022. Physical link of the polar field buildup with the Waldmeier effect broadens the scope of early solar cycle prediction: Cycle 25 is likely to be slightly stronger than Cycle 24. Mon Notices Royal Astron Soc 513(1): L112–L116. https://doi.org/10.1093/mnrasl/slac043. [CrossRef] [Google Scholar]
- Kumar P, Nagy M, Lemerle A, Karak BB, Petrovay K. 2021. The polar precursor method for solar cycle prediction: comparison of predictors and their temporal range. Astrophys J 909(1): 87. https://doi.org/10.3847/1538-4357/abdbb4. [CrossRef] [Google Scholar]
- Lanzerotti LJ. 2001. Space weather effects on technologies. In: Space weather. Geophysical Monograph Series, vol. 125, Song P, Singer HJ, Siscoe GL, (Eds.), American Geophysical Union (AGU), Washington, DC, pp. 11–22. ISBN 9781118668351. https://doi.org/10.1029/GM125p0011. [Google Scholar]
- Leamon R, McIntosh SW, Title A. 2022. Deciphering solar magnetic activity: The solar cycle clock. Front Astron Space Sci 9: 14. https://doi.org/10.3389/fspas.2022.886670. [CrossRef] [Google Scholar]
- Leighton R. 1969. A magneto-kinematic model of the solar cycle. Astrophys J 156: 1. https://doi.org/10.1086/149943. [CrossRef] [Google Scholar]
- Li F, Kong D, Xie J, Xiang N, Xu J. 2018. Solar cycle characteristics and their application in the prediction of cycle 25. J Atmos Sol Terr Phys 181: 110–115. https://doi.org/10.1016/j.jastp.2018.10.014. [CrossRef] [Google Scholar]
- Lockwood M, Chambodut A, Barnard LA, Owens M, Clarke E, Mendel V. 2018a. A homogeneous aa index: 1. Secular variation. J Space Weather Space Clim 8: A53. https://doi.org/10.1051/swsc/2018038. [CrossRef] [EDP Sciences] [Google Scholar]
- Lockwood M, Finch ID, Chambodut A, Barnard L, Owens M, Clarke E. 2018b. A homogeneous aa index: 2. Hemispheric asymmetries and the equinoctial variation. J Space Weather Space Clim 8: A58. https://doi.org/10.1051/swsc/2018044. [CrossRef] [EDP Sciences] [Google Scholar]
- Lockwood M, Nevanlinna H, Barnard L, Owens MJ, Harrison RG, Rouillard AP, Scott CJ. 2014. Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 yr – Part 4: Near-Earth solar wind speed, IMF, and open solar flux. Ann Geophys 32(4): 383–399. https://doi.org/10.5194/angeo-32-383-2014. [CrossRef] [Google Scholar]
- Lockwood M, Owens MJ, Barnard L, Davis CJ, Steinhilber F. 2011. The persistence of solar activity indicators and the descent of the Sun into Maunder Minimum conditions. Geophys Res Lett 38(22): L22105. https://doi.org/10.1029/2011GL049811. [Google Scholar]
- Lockwood M, Owens MJ, Barnard L, Haines C, Scott C, McWilliams KA, Coxon JC. 2020. Semi-annual, annual and Universal Time variations in the magnetosphere and in geomagnetic activity: 1. Geomagnetic data. J Space Weather Space Clim 10: 23. https://doi.org/10.1051/swsc/2020023. [CrossRef] [EDP Sciences] [Google Scholar]
- Lockwood M, Stamper R, Wild M. 1999. A doubling of the Sun’s coronal magnetic field during the past 100 years. Nature 399: 437–439. https://doi.org/10.1038/20867. [CrossRef] [Google Scholar]
- McIntosh S, Chapman S, Leamon R, Egeland R, Watkins NW. 2020. Overlapping magnetic activity cycles and the sunspot number: forecasting sunspot cycle 25 amplitude. Sol Phys 295: 163. https://doi.org/10.1007/s11207-020-01723-y. [CrossRef] [Google Scholar]
- McIntosh SW, Leamon RJ, Egeland R. 2023. Deciphering solar magnetic activity: The (solar) hale cycle terminator of 2021. Front Astron Space Sci 10: 1050523. https://doi.org/10.3389/fspas.2023.1050523. [CrossRef] [Google Scholar]
- Nagovitsyn Y, Ivanov V. 2023. Solar cycle pairing and prediction of cycle 25. Sol Phys 298: 37. https://doi.org/10.1007/s11207-023-02121-w. [CrossRef] [Google Scholar]
- Nandy D. 2021. Progress in solar cycle predictions: sunspot cycles 2425 in perspective. Sol Phys 296: 54. https://doi.org/10.1007/s11207-021-01797-2. [CrossRef] [Google Scholar]
- Nevanlinna H. 2004. Results of the Helsinki magnetic observatory 1844–1912. Ann Geophys 22(5): 1691–1704. https://doi.org/10.5194/angeo-22-1691-2004. [CrossRef] [Google Scholar]
- Ohl A. 1966. Forecast of sunspot maximum number of cycle 20. Soln Dannye 12: 84–85. https://doi.org/10.1088/0004-6256/138/6/1998. [Google Scholar]
- Owens MJ, Lockwood M, Barnard L, Davis CJ. 2011. Solar cycle 24: Implications for energetic particles and long-term space climate change. Geophys Res Lett 38(19): L19106. https://doi.org/10.1029/2011GL049328. [Google Scholar]
- Parker E. 1955. Hydromagnetic dynamo models. Astrophys. J 122: 293. https://doi.org/10.1086/146087. [CrossRef] [Google Scholar]
- Penza V, Berrilli F, Bertello L, Cantoresi M, Criscuoli S. 2021. Prediction of sunspot and plage coverage for solar cycle 25. Astrophys J Letters 922: 1. https://doi.org/10.3847/2041-8213/ac3663. [Google Scholar]
- Pesnell W. 2012. Solar cycle predictions (Invited review). Sol Phys 281: 507–532. https://doi.org/10.1007/s11207-012-9997-5. [Google Scholar]
- Pesnell W, Schatten K. 2018. An Early Prediction of the Amplitude of Solar Cycle 25. Sol Phys 293: 112. https://doi.org/10.1007/s11207-018-1330-5. [CrossRef] [Google Scholar]
- Petrovay K. 2020. Solar cycle prediction. Living Rev Sol Phys 17: 2. https://doi.org/10.1007/s41116-020-0022-z. [CrossRef] [Google Scholar]
- Richardson I, Cane H. 2012. Near-earth solar wind flows and related geomagnetic activity during more than four solar cycles (1963–2011). J Space Weather Space Clim 2: A02. https://doi.org/0.1051/swsc/2012003. [Google Scholar]
- Rosenberg RL, Coleman PJ Jr. 1969. Heliographic latitude dependence of the dominant polarity of the interplanetary magnetic field. J Geophys Res 74(24): 5611–5622. https://doi.org/10.1029/JA074i024p05611. [CrossRef] [Google Scholar]
- Russell CT, McPherron RL. 1973. Semiannual variation of geomagnetic activity. J Geophys Res 78(1): 92–108. https://doi.org/10.1029/JA078i001p00092. [CrossRef] [Google Scholar]
- Salminen A, Asikainen T, Maliniemi V, Mursula K. 2020. Comparing the effects of solar-related and terrestrial drivers on the northern polar vortex. J Space Weather Space Clim 10: 56. https://doi.org/10.1051/swsc/2020058. [CrossRef] [EDP Sciences] [Google Scholar]
- Sarp V, Kilcik A, Yurchyshyn V, Rozelot JP, Ozguc A. 2018. Prediction of solar cycle 25: a non-linear approach. Mon Notices Royal Astron Soc 481(3): 2981–2985. https://doi.org/10.1093/mn-ras/sty2470. [CrossRef] [Google Scholar]
- Schatten KH, Scherrer PH, Svalgaard L, Wilcox JM. 1978. Using dynamo theory to predict the sunspot number during solar cycle 21. Geophys Res Lett 5(5): 411–414. https://doi.org/10.1029/GL005i005p00411. [CrossRef] [Google Scholar]
- Schwabe H. 1844. Sonnen Beobachtungen im Jahre 1843. Astron Nachr 21(15): 234–235. https://doi.org/10.1002/asna.18440211505. [CrossRef] [Google Scholar]
- SILSO World Data Center. 1749–2023. The International Sunspot Number. International Sunspot Number Monthly Bulletin and online catalogue. Available at http://www.sidc.be/silso/. [Google Scholar]
- Stewart JQ, Panofsky HAA. 1938. The mathematical characteristics of sunspot variations. Astrophys J 88: 385. https://doi.org/10.1086/143994. [CrossRef] [Google Scholar]
- Takalo J. 2021. Separating the aa-index into solar and hale cycle related components using principal component analysis. Sol Phys 296: 80. https://doi.org/10.1007/s11207-021-01825-1. [CrossRef] [Google Scholar]
- Takalo J, Mursula K. 2018. Principal component analysis of sunspot cycle shape. A&A 620: A100. https://doi.org/10.1051/0004-6361/201833924. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Toriumi S, Schrijver C, Harra L, Hudson H, Nagashima K. 2017. Magnetic properties of solar active regions that govern large solar flares and eruptions. Astrophys J 834: 56. https://doi.org/10.3847/1538-4357/834/1/56. [Google Scholar]
- Upton LA, Hathaway DH. 2018. An updated solar cycle 25 prediction with AFT: the modern minimum. Geophys Res Lett 45(16): 8091–8095. https://doi.org/10.1029/2018GL078387. [CrossRef] [Google Scholar]
- Vokhmyanin MV, Ponyavin DI. 2012. Inferring interplanetary magnetic field polarities from geomagnetic variations. J Geophys Res Space Phys 117: A6. https://doi.org/10.1029/2011JA017060. [Google Scholar]
- Volobuev D. 2009. The shape of the sunspot cycle: a one-parameter fit. Sol Phys 258: 319–330. https://doi.org/10.1007/s11207-009-9429-3. [CrossRef] [Google Scholar]
- Waldmeier M. 1935. Neue Eigenschaften der Sonnenfleckenkurve. Astron Mitt Zurich 14: 105–136. [Google Scholar]
- Waldmeier M. 1968. Sonnenfleckenkurven und die methode der sonnenaktivittsprognose. Astron Mitt Zurich 286. [Google Scholar]
- Ward W, Seppälä A, Yigit E, Nakamura T, Stolle C, et al. 2021. Role of the sun and the middle atmosphere/thermosphere/ionosphere in climate (ROSMIC): a retrospective and prospective view. Prog Earth Planet Sci 8(1): 47. https://doi.org/10.1186/s40645-021-00433-8. [CrossRef] [Google Scholar]
- Wolf R. 1861. Abstract of his latest results. Mon Notices Royal Astron Soc 21(3): 77–78. doi:10.1093/mnras/21.3.77. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.