COST Action ES0803
Open Access
Issue
J. Space Weather Space Clim.
Volume 3, 2013
COST Action ES0803
Article Number A14
Number of page(s) 17
DOI https://doi.org/10.1051/swsc/2013036
Published online 26 March 2013
  • Agee, E.M., K. Kiefer, and E. Cornett, Relationship of lower troposphere cloud cover and cosmic rays: an updated perspective, J. Clim., 25 (3), 1057–1060, 2012. [CrossRef] [Google Scholar]
  • Agostinelli, S., J. Allison, K. Amako, H. Araujo, et al., GEANT 4 – a simulation toolkit, Nucl. Instrum. Methods Phys. Res., A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506 (3), 250–303, 2003. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Alcaraz, J., B. Alpat, G. Ambrosi, H. Anderhub, L. Ao, et al., Cosmic protons AMS collaboration, Phys. Lett., B 490, 27, 2000a. [NASA ADS] [CrossRef] [Google Scholar]
  • Alcaraz, J., B. Alpat, G. Ambrosi, H. Anderhubag, L. Ao, et al., Helium in near Earth orbit AMS collaboration, Phys. Lett., B 494, 193, 2000b. [NASA ADS] [CrossRef] [Google Scholar]
  • Battistoni, G., S. Muraro, P.R. Sala, F. Cerutti, A. Ferrari, et al., M., Albrow, and R. Raja, The FLUKA code: description and benchmarking. in Proc. of the Hadronic Shower Simulation Workshop 2006, Fermilab 6–8 September 2006, 896: AIP Conference Proc, 31–49, 2007. [Google Scholar]
  • Bazilevskaya, G.A., I.G. Usoskin, E.O. Fluckiger, R.G. Harrison, L. Desorgher, et al., Cosmic ray induced ion production in the atmosphere, Space Sci. Rev., 137, 149–173, 2008. [NASA ADS] [CrossRef] [Google Scholar]
  • Berezinsky, V.S., S.V. Balanov, V.L. Ginzburg, V.A. Dogel, and V.S. Ptuskin, Astrophysics of the Cosmic Rays, Nauka Publishing House, Moscow, 1984. [Google Scholar]
  • Bering III, E.A., A.A. Few, and J.R. Benbrook, The global electric circuit, Phys. Today, 51 (10), 24, 1998. [CrossRef] [Google Scholar]
  • Boezio, M., P. Carlson, T. Francke, N. Weber, M. Suffert, et al., The cosmic ray proton and helium spectra between 0.4 and 200 GV, Astrophys. J., 518, 457, 1999. [NASA ADS] [CrossRef] [Google Scholar]
  • Brasseur, G., and S. Solomon, Aeronomy of the Middle Atmosphere, Springer, Dordrecht, 2005. [Google Scholar]
  • Buchvarova, M., and P.I.Y. Velinov, Modeling spectra of cosmic rays influencing on the ionospheres of earth and outer planets during solar maximum and minimum, J. Adv. Space Res., 36 (11), 2127–2133, 2005. [CrossRef] [Google Scholar]
  • Buchvarova, M., and P.I.Y. Velinov, Empirical model of cosmic ray spectrum in energy interval 1 MeV–100 GeV during 11-year solar cycle, J. Adv. Space Res., 45 (8, 1), 1026–1034, 2010. [CrossRef] [Google Scholar]
  • Buchvarova, M., P.I.Y. Velinov, and I. Buchvarov, Model approximation of cosmic ray spectrum, Planet. Space Sci., 59 (4), 355–363, 2011. [CrossRef] [Google Scholar]
  • Burger, R.A., M.S. Potgieter, and B. Heber, Rigidity dependence of cosmic ray proton latitudinal gradients measured by the Ulysses spacecraft: implications for the diffusion tensor, J. Geophys. Res., 105, 27447, 2000. [NASA ADS] [CrossRef] [Google Scholar]
  • Butikofer, R., E.O. Fluckiger, L. Desorgher and M.R. Moser, The extreme solar cosmic ray particle event on 20 January 2005 and its influence on the radiation dose rate at aircraft altitude, Sci. Total Environ., 391 (2–3), 177–183, 2008. [CrossRef] [Google Scholar]
  • Calisto, M., I. Usoskin, E. Rozanov, and T. Peter, Influence of galactic cosmic rays on atmospheric composition and dynamics, Atmos. Chem. Phys., 11, 4547–4556, 2011. [NASA ADS] [CrossRef] [Google Scholar]
  • Cummings, A.C., E.C. Stone, and W.R. Webber, Evidence that the anomalous cosmic-ray component is singly ionized, Astrophys. J., 287, 99–103, 1984. [CrossRef] [Google Scholar]
  • Desorgher, L., E. Fluckiger, M. Gurtner, M.R. Moser, R. Bütikofer, et al., Atmocosmics: a GEANT4 code for computing the interaction of cosmic rays with the Earths atmosphere, Int. J. Mod. Phys., A 20 (29), 6802–6804, 2005. [NASA ADS] [CrossRef] [Google Scholar]
  • Dorman, L.I., Cosmic Rays in the Earth’s Atmosphere and Underground, Kluwer Academic Publishers, Dordrecht, 2004. [CrossRef] [Google Scholar]
  • Dorman, L.I., and I.D. Kozin, Cosmic Radiation in the Upper Atmosphere, Fizmatgiz, Moscow, 1983. [Google Scholar]
  • Dorman, L.I., and T.M. Krupitskaya, Calculation of expected ratio of solar cosmic ray ion generation speeds on different altitudes, in Cosmic Rays, Nauka, Moscow, 15, 30–33, 1975. [Google Scholar]
  • Egorova, T., E. Rozanov, V. Zubov, E. Manzini, W. Schmutz, and T. Peter, Chemistry-climate model SOCOL: a validation of the present-day climatology, Atmos. Chem. Phys., 5, 1557–1576, DOI: 10.5194/acp-8-6365-2005, 2005. [CrossRef] [Google Scholar]
  • Ferrari, A., and P. Sala, ATLAS Int. Note PHYS-No-086, CERN, Geneva, 1996. [Google Scholar]
  • Fesefeldt, H.C., GHEISHA program, Technical Report PITHA 85-02, III Physikalisches Institut, RWTH Aachen Physikzentrum, 5100 Aachen, Germany, September, 1985. [Google Scholar]
  • Ginzburg, V.L., and S.I. Syrovatskii, The Origin of the Cosmic Rays, Pergamon Press, Oxford, 1964. [Google Scholar]
  • Harrison, R.G., The global atmospheric electrical circuit and climate, Sur. Geophys., 25 (5–6), 441–484, 2004. [CrossRef] [Google Scholar]
  • Heck, D., J. Knapp, J.N. Capdevielle, G. Schatz and T. Thouw, CORSIKA: A Monte Carlo Code to Simulate Extensive Air Showers, Forschungszentrum Karlsruhe Report FZKA 6019, 1998. [Google Scholar]
  • Hillas, A.M., Cosmic Rays, Pergamon Press, Oxford, 1972. [Google Scholar]
  • Keilhauer, B., J. Blumer, R. Engel, H.O. Klages and M. Risse, Impact of varying atmospheric profiles on extensive air shower observation: atmospheric density and primary mass reconstruction, Astropart. Phys., 22 (3–4), 249–261, 2004. [CrossRef] [Google Scholar]
  • Keilhauer, B., J. Blumer, R. Engel and H.O. Klages, Impact of varying atmospheric profiles on extensive air shower observation: fluorescence light emission and energy reconstruction, Astropart. Phys., 25 (4), 259–268, 2006. [CrossRef] [Google Scholar]
  • Kilifarska, N.A., Climate sensitivity to the lower stratospheric ozone variations, J. Atmos. Sol. Terr. Phys., 90/91, 9–14, 2012a. [CrossRef] [Google Scholar]
  • Kilifarska, N.A., Ozone as a mediator of galactic cosmic ray influence on climate, Sun Geosphys., 7 (2), 97–102, 2012b. [Google Scholar]
  • Kilifarska, N.A., An autocatalytic cycle for ozone production in the lower stratosphere initiated by Galactic Cosmic rays, C.R. Acad. Bulg. Sci., 66 (2), 243–252, 2013. [Google Scholar]
  • Krivolutsky, A., A. Kuminov, and T. Vyushkova, Ionization of the atmosphere caused by solar protons and its influence on ozonosphere of the Earth during 1994–2003, J. Atmos. Sol. Terr. Phys., 67, 105–117, 2005. [CrossRef] [Google Scholar]
  • Kudela, K., On energetic particles in space, Acta Phys. Slovaca, 59, 537–652, 2009. [CrossRef] [Google Scholar]
  • Kudela, K., M. Storini, M.Y. Hofer, and A. Belov, Cosmic rays in relation to space weather, Space Sci. Rev., 93 (1–2), 153–174, 2000. [CrossRef] [Google Scholar]
  • Kudela, K., H. Mavromichalaki, A. Papaioannou, and M. Gerontidou, On mid-term periodicities in cosmic rays, Sol. Phys., 266, 173–180, 2010. [NASA ADS] [CrossRef] [Google Scholar]
  • Laštovička, J., and P. Križan, Geomagnetic storms, Forbush decreases of cosmic rays and total ozone at northern higher middle latitudes, J. Atmos. Sol. Terr. Phys., 67, 119–124, 2005. [CrossRef] [Google Scholar]
  • Laštovička, J., and P. Križan, Impact of strong geomagnetic storms on total ozone at southern higher middle latitudes, Stud. Geophys. Geod., 53, 151–156, 2009. [CrossRef] [Google Scholar]
  • Leske, R.A., A.C. Cummings, R.A. Mewaldt, and E.C. Stone, Anomalous and galactic cosmic rays at 1 AU during the cycle 23/24 solar minimum, Space Sci. Rev., DOI: 10.1007/s11214-011-9772-1, 2011. [Google Scholar]
  • Markson, R., and M. Muir, Solar wind control of the Earth’s electric field, Science, 208, 979–990, 1980. [CrossRef] [Google Scholar]
  • McDonald, F.B., B. Klecker, R.E. McGuire, and D.V. Reames, Relative recovery of galactic and anomalous cosmic rays at 1 AU: further evidence for modulation in the heliosheath, J. Geophys. Res., 107 (A8), DOI: 10.1029/2001JA000206, 2002. [CrossRef] [Google Scholar]
  • Menn, W., M. Hof, O. Reimer, M. Simon, A.J. Davis, et al., The absolute flux of protons and helium at the top of the atmosphere using IMAX, Astrophys J., 533, 281, 2000. [NASA ADS] [CrossRef] [Google Scholar]
  • Mertens, C.J., B.T. Kress, M. Wiltberger, W.K. Tobiska, B. Grajewski, X. Xu, in Atmospheric Ionizing Radiation from Galactic and Solar Cosmic Rays, Current Topics in Ionizing Radiation Research, edited by M. Dr. Nenoi, InTech, Available from: http: //www.intechopen.com/books/current-topics-in-ionizing-radiation-research/atmospheric-ionizing-radiationfrom-galactic-and-solar-cosmic-rays, 2012. [Google Scholar]
  • Miroshnichenko, L.I., Solar Cosmic Rays, ASSL, 260, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001. [CrossRef] [Google Scholar]
  • Miroshnichenko, L.I., Solar cosmic rays in the system of solar-terrestrial relations, J. Atmos. Sol. Terr. Phys., 70, 450–466, 2008. [CrossRef] [Google Scholar]
  • Mishev, A., A study of atmospheric processes based on neutron monitor data and Cherenkov counter measurements at high mountain altitude, J. Atmos. Sol. Terr. Phys., 72 (16), 1195–1199, 2010. [CrossRef] [Google Scholar]
  • Mishev, A., and P.I.Y. Velinov, Atmosphere ionization due to cosmic ray protons estimated with CORSIKA code simulations, C.R. Acad. Bulg. Sci., 60 (3), 225–230, 2007. [Google Scholar]
  • Mishev, A., and P.I.Y. Velinov, Effects of atmospheric profile variations on yield ionization function Y in the atmosphere, C.R. Acad. Bulg. Sci., 61 (5), 639–644, 2008. [Google Scholar]
  • Mishev, A., and P.I.Y. Velinov, Normalized atmospheric ionization yield functions Y for different cosmic ray nuclei obtained with recent CORSIKA code simulations, C.R. Acad. Bulg. Sci., 62 (5), 631–640, 2009. [Google Scholar]
  • Mishev, A., and P.I.Y. Velinov, The effect of model assumptions on computations of cosmic ray induced ionization in the atmosphere, J. Atmos. Sol. Terr. Phys., 72, 476–481, 2010. [CrossRef] [Google Scholar]
  • Mishev, A., and P.I.Y. Velinov, Renormalized ionization yield function Y for different nuclei obtained with full Monte Carlo simulations, C.R. Acad. Bulg. Sci., 64 (7), 997–1006, 2011a. [Google Scholar]
  • Mishev, A., and P.I.Y. Velinov, Normalized ionization yield function for various nuclei obtained with full Monte Carlo simulations, J. Adv. Space Res., 48, 19–24, 2011b. [CrossRef] [Google Scholar]
  • Mishev, A., and P.I.Y. Velinov, Contribution of cosmic ray nuclei of solar and galactic origin to atmospheric ionization during SEP event on 20 January 2005, C.R. Acad. Bulg. Sci., 65 (3), 373–380, 2012. [Google Scholar]
  • Mishev, A., P.I.Y. Velinov, and L. Mateev, Atmospheric ionization due to solar cosmic rays from 20 January 2005 calculated with Monte Carlo simulations, C.R. Acad. Bulg. Sci., 63 (11), 1635–1642, 2010. [Google Scholar]
  • Mishev, A., P.I.Y. Velinov, L. Mateev, and Y. Tassev, Ionization effect of solar protons in the Earth atmosphere – case study of the 20 January 2005 SEP event, J. Adv. Space Res., 48, 1232–1237, 2011. [CrossRef] [Google Scholar]
  • Mishev, A., P.I.Y. Velinov, L. Mateev, and Y. Tassev, Ionization effect of nuclei with solar and galactic origin in the earth atmosphere during GLE 69 on 20 January 2005, J. Atmos. Sol. Terr. Phys., 89, 1–7, 2012. [CrossRef] [Google Scholar]
  • Nestorov, G., Physics of the Lower Ionosphere, Publ. House of the Bulg. Acad. Sci, Sofia, 1969. [Google Scholar]
  • O’Brien, K., Cosmic-ray propagation in the atmosphere, Il Nuovo Cimento A, 3 (4), 521–547, 1971. [Google Scholar]
  • Olson, D.E., Interpretation of the solar influence on the atmospheric electrical parameters, in Weather and Climate Responses to Solar Variations, edited by B.M., McCormac, Assoc. Univ. Press, Boulder, CO, 483–488, 1983. [Google Scholar]
  • Porter, H.S., C.H. Jackman, and A.E.S. Green, Efficiencies for production of atomic nitrogen and oxygen by relativistic proton impact in air, J. Chem. Phys., 65, 154–167, 1976. [NASA ADS] [CrossRef] [Google Scholar]
  • Press, W.H., B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipes in C++ – the Art of Scientific Computing, Cambridge University Press, Cambridge, 1991. [Google Scholar]
  • Reid, G.S., A study of enhanced ionisation produced by solar protons during a polar cap absorption event, J. Geophys. Res., 66, 4071, 1961. [CrossRef] [Google Scholar]
  • Rycroft, M.J., S. Israelson, and C. Price, The global atmospheric electrical circuit, solar activity, and climate change, J. Atmos. Sol. Terr. Phys., 62 (17–18), 1563–1576, 2000. [CrossRef] [Google Scholar]
  • Rycroft, M.J., A. Odzimek, N.F. Arnold, M. Fullekrug, A. Kulak, and T. Neubert, New model simulations of the global atmospheric electrical circuit driven by thunderstorms and electrified shower clouds: the roles of lightning and sprites, J. Atmos. Sol. Terr. Phys., 69, 2485–2509, 2007. [CrossRef] [Google Scholar]
  • Scherer, K., H. Fichtner, T. Borrmann, J. Beer, L. Desorgher, E. Flükiger, and H.-J. Fahr, Interstellar-terrestrial relations: variable cosmic environments, the dynamic heliosphere, and their imprints on terrestrial archives and climate, Space Sci. Rev., 127, 327–465, 2007. [NASA ADS] [CrossRef] [Google Scholar]
  • Seo, E.S., J.F. Ormes, R.E. Streitmatter, S.J. Stochaj, W.V. Jones, et al., Measurement of cosmic-ray proton and helium spectra during the 1987 solar minimum, Astrophys. J., 371, 763, 1991. [CrossRef] [Google Scholar]
  • Shikaze, Y., S. Haino, K. Abe, H. Fuke, T. Hams, et al., Measurements of 0.2–20 GeV/n cosmic-ray proton and helium spectra from 1997 through 2002 with the BESS spectrometer, Astropart. Phys., 28, 154, 2007. [NASA ADS] [CrossRef] [Google Scholar]
  • Simpson, J.A., Cosmic radiation: particle astrophysics in the heliosphere, in Frontiers in Cosmic Physics, edited by R.B., Mendell, and A.I. Mincer, Ann. N. York Acad. Sci., 655, 95, 1992. [Google Scholar]
  • Singh, A.K., D. Siingh, and R.P. Singh, Space weather: physics, effects and predictability, Surv. Geophys., 31, 581–638, 2010. [CrossRef] [Google Scholar]
  • Singh, A.K., D. Singh, and R.P. Singh, Impact of galactic cosmic rays on Earth’s atmosphere and human health, Atmos. Environ., 45, 3806–3818, 2011. [CrossRef] [Google Scholar]
  • R., Sternheimer, in Fundamental Principles and Methods of Particle Detection. Methods of Experimental Physics, vol. V, A. Nuclear Physics, edited by L.C.L., Yuan, and C.S. Wu, New York, London, Academic Press, 1961. [Google Scholar]
  • Svensmark, H., Influence of cosmic rays on Earth’s climate, Phys. Rev. Lett., 81 (22), 5027–5030, 1998. [NASA ADS] [CrossRef] [Google Scholar]
  • Tinsley, B.A., Influence of solar wind on the global electric circuit, and inferred effects on cloud microphysics, temperature, and dynamics in the troposphere, Space Sci. Rev., 94 (1–2), 231–258, 2000. [CrossRef] [Google Scholar]
  • Tinsley, B.A., A working hypothesis for connections between electrically-induced changes in cloud microphysics and storm vorticity, with possible effects on circulation, Adv. Space Res., 50, 791–805, 2012. [CrossRef] [Google Scholar]
  • Tinsley, B.A., and R.A. Heelis, Correlations of atmospheric dynamics with solar activity: evidence for a connection via the solar wind, atmospheric electricity, and cloud microphysics, J. Geophys. Res., 98, 10375–10384, 1993. [CrossRef] [Google Scholar]
  • Tinsley, B.A., and L. Zhou, Initial results of a global circuit model with stratospheric and tropospheric aerosols, J. Geophys.Res., 111, D16205, 2006. [CrossRef] [Google Scholar]
  • Tonev, P.T., and P.I.Y. Velinov, Model study of the influence of solar wind parameters on electric currents and fields in middle atmosphere at high latitudes, C.R. Acad. Bulg. Sci., 64 (12), 1733–1742, 2011. [Google Scholar]
  • Tsagouri, I., A. Belehaki, N. Bergeot, C. Cid, V. Delouille, et al., Progress in space weather modeling in an operational environment, J. Space Weather Space Clim., 3, in press, 2013. [CrossRef] [EDP Sciences] [Google Scholar]
  • Usoskin, I.G., O.G. Gladysheva, and G.A. Kovaltsov, Cosmic ray induced ionization in the atmosphere: spatial and temporal changes, J. Atmos. Sol. Terr. Phys., 66, 1791–1796, 2004. [CrossRef] [Google Scholar]
  • Usoskin, I., K. Alanko-Huotari, G. Kovaltsov, and K. Mursula, Heliospheric modulation of cosmic rays: Monthly Reconstruction for 1951–2004, J. Geophys. Res., 110 (A12), CiteID: A12108, 2005. [Google Scholar]
  • Usoskin, I., L. Desorgher, P.I.Y. Velinov, M. Storini, E. Flueckiger, R. Buetikofer, and G.A. Kovalstov, in Solar and Galactic Cosmic Rays in the Earth’s Atmosphere. Developing the Scientific Basis for Monitoring, Modeling and Predicting Space Weather, edited by Lilensten, J., COST 724 Final Report, COST Office, Brussels, 127–135, 2008. [Google Scholar]
  • Usoskin, I, L. Desorgher, P.I.Y. Velinov, M. Storini, E. Flueckiger, R. Buetikofer, and G.A. Kovalstov, Solar and galactic cosmic rays in the Earth’s atmosphere, Acta Geophys., 57, (1/March), 88–101, 2009. [NASA ADS] [CrossRef] [Google Scholar]
  • Usoskin, I., and G. Kovaltsov, Cosmic ray induced ionization in the atmosphere: full modeling and practical applications, J. Geophys. Res., 111, D21206, 2006. [CrossRef] [Google Scholar]
  • Usoskin, I.G., G.A. Kovaltsov, and I.A. Mironova, Cosmic ray induced ionization model CRAC: CRII: an extension to the upper atmosphere, J. Geophys. Res., 115, D10302, 2010. [CrossRef] [Google Scholar]
  • Usoskin, I.G., G.A. Kovaltsov, I.A. Mironova, A.J. Tylka and W.F. Dietrich, Ionization effect of solar particle GLE events in low and middle atmosphere, Atmos. Chem. Phys., 11, 1979–1988, 2011. [CrossRef] [Google Scholar]
  • Vainio, R., L. Desorgher, D. Heynderickx, M. Storini, E. Flückiger, et al., Dynamics of the Earth’s particle radiation environment, Space Sci. Rev., 147, 187–231, 2009. [NASA ADS] [CrossRef] [Google Scholar]
  • Van Allen, J.A., Physics and Medicine of the Upper Atmosphere, Chapter 14, Albuquerque: Univ. N. Mexico Press, 1952. [Google Scholar]
  • Velinov, P.I.Y., An expression for ionospheric electron production rate by cosmic rays, C.R. Acad. Bulg. Sci., 19 (2), 109–112, 1966. [Google Scholar]
  • Velinov, P.I.Y., Some results of the rate of electron production in the cosmic layer of low ionosphere, C.R. Acad. Bulg. Sci., 20 (11), 1141–1144, 1967a. [Google Scholar]
  • Velinov, P.I.Y., On electron production rates in the polar cap ionosphere due to solar cosmic rays, C.R. Acad. Bulg. Sci., 20 (12), 1278–1278, 1967b. [Google Scholar]
  • Velinov, P.I.Y., On ionization in the ionospheric D region by galactic and solar cosmic rays, J. Atmos. Terr. Phys., 30, 1891–1905, 1968. [CrossRef] [Google Scholar]
  • Velinov, P.I.Y., Solar cosmic ray ionization in the low ionosphere, J. Atmos. Terr. Phys., 32, 139–147, 1970. [CrossRef] [Google Scholar]
  • Velinov, P.I.Y., Cosmic ray ionization rates in the planetary atmospheres, J. Atmos. Terr. Phys., 36, 359–362, 1974. [CrossRef] [Google Scholar]
  • Velinov, P.I.Y., Effect of the Anomalous Cosmic Ray (ACR) component on the high-latitude ionosphere, C.R. Acad. Bulg. Sci., 44 (2), 33–36, 1991. [Google Scholar]
  • Velinov, P.I.Y., and L. Mateev, Response of the middle atmosphere on galactic cosmic ray influence, Geomagn. Aeronomy, 30 (4), 593–598, 1990. [Google Scholar]
  • Velinov, P.I.Y., and L. Mateev, Improved cosmic ray ionization model for the system ionosphere - atmosphere. Calculation of electron production rate profiles, J. Atmos. Sol. Terr. Phys., 70, 574–582, 2008a. [NASA ADS] [CrossRef] [Google Scholar]
  • Velinov, P.I.Y., and L. Mateev, Analytical approach to cosmic ray ionization by nuclei with charge Z in the middle atmosphere – distribution of galactic CR effects, J. Adv. Space Res., 42, 1586–1592, 2008b. [NASA ADS] [CrossRef] [Google Scholar]
  • Velinov, P.I.Y., and A. Mishev, Cosmic ray induced ionization in the atmosphere estimated with CORSIKA code simulations, C.R. Acad. Bulg. Sci., 60 (5), 495–502, 2007. [Google Scholar]
  • Velinov, P.I.Y., and A. Mishev, Cosmic ray induced ionization in the upper, middle and lower atmosphere simulated with CORSIKA code, in Proceedings of the 30th International Cosmic Ray Conference, Merida, Mexico, 3–11 July 2007, edited by R., Caballero, et al., Universidad Nacional Autónoma de México, Mexico City, Mexico, 1 (SH), 749–752, 2008a. [Google Scholar]
  • Velinov, P.I.Y., and A. Mishev, Solar cosmic ray induced ionization in the Earth’s atmosphere obtained with CORSIKA code simulations, C.R. Acad. Bulg. Sci., 61 (7), 927–932, 2008b. [Google Scholar]
  • Velinov, P.I.Y., and P. Tonev, Electric currents from thunderstorms to the ionosphere during a solar cycle: quasi-static modeling of the coupling mechanism, J. Adv. Space Res., 42, 569–1575, 2008. [Google Scholar]
  • Velinov, P.I.Y., G. Nestorov, and L. Dorman, Cosmic Ray Influence on the Ionosphere and on the Radio-Wave Propagation, BAS Publ. House, Sofia, 1974. [Google Scholar]
  • Velinov, P.I.Y., M. Buchvarova, L. Mateev, and H. Ruder, Determination of electron production rates caused by cosmic ray particles in ionospheres of terrestrial planets, J. Adv. Space Res., 27 (11), 1901–1908, 2001. [CrossRef] [Google Scholar]
  • Velinov, P.I.Y., H. Ruder, L. Mateev, M. Buchvarova, and V. Kostov, Method for calculation of ionization profiles caused by cosmic rays in giant planet ionospheres from Jovian group, J. Adv. Space Res., 33, 232–239, 2004. [CrossRef] [Google Scholar]
  • Velinov, P.I.Y., L. Mateev, and N. Kilifarska, 3D model for cosmic ray planetary ionization in the middle atmosphere, Annal. Geophys., 23 (9), 3043–3046, 2005a. [CrossRef] [Google Scholar]
  • Velinov, P.I.Y., H. Ruder, and L. Mateev, Analytical model for cosmic ray ionization by nuclei with charge Z in the lower ionosphere and middle atmosphere, C.R. Acad. Bulg. Sci., 58, 897–902, 2005b. [Google Scholar]
  • Velinov, P.I.Y., H. Ruder, and L. Mateev, Energy interval coupling in improved cosmic ray ionization model with three intervals in ionization losses function for the system atmosphere/ionosphere, C.R. Acad. Bulg. Sci., 59, 847–854, 2006. [Google Scholar]
  • Velinov, P.I.Y., L. Mateev, and H. Ruder, Generalized model of ionization profiles due to cosmic ray particles with charge Z in planetary ionospheres and atmospheres with 5 energy interval approximation of the ionization losses function, C.R. Acad. Bulg. Sci., 61 (1), 133–146, 2008. [Google Scholar]
  • Velinov, P.I.Y., A. Mishev, and L. Mateev, Model for induced ionization by galactic cosmic rays in the Earth atmosphere and ionosphere, J. Adv. Space Res., 44, 1002–1007, 2009. [CrossRef] [Google Scholar]
  • Velinov, P.I.Y., S. Asenovski, and L. Mateev, Simulation of cosmic ray ionization profiles in the middle atmosphere and lower ionosphere on account of characteristic energy intervals, C.R. Acad. Bulg. Sci., 64 (9), 1303–1310, 2011a. [Google Scholar]
  • Velinov, P.I.Y., A. Mishev, S. Asenovski, and L. Mateev, New operational models for cosmic ray ionization in space physics, Bulg. J. Phys., 38, 264–273, 2011b. [Google Scholar]
  • Velinov, P.I.Y., S. Asenovski, and L. Mateev, Improved cosmic ray ionization model for ionosphere and atmosphere (CORIMIA) with account of 6 characteristic intervals, C.R. Acad. Bulg. Sci., 65 (8), 1135–1144, 2012. [Google Scholar]
  • Vitt, F.M., and C.H. Jackman, A comparison of sources of odd nitrogen production from 1974 through 1993 in the Earth’s middle atmosphere as calculated using a two-dimensional model, J. Geophys. Res., 101, 6729–6740, 1996. [CrossRef] [Google Scholar]
  • Weimer, D.R., A flexible, IMF dependent model of high latitude electric potential having “space weather” applications, Geophys. Res. Lett., 23, 2549–2552, 1996. [CrossRef] [Google Scholar]
  • Williams, E.R., The global electrical circuit: a review, Atmos. Res., 91, 140–152, 2009. [CrossRef] [Google Scholar]
  • Wissing, J.M., and M.B. Kallenrode, Atmospheric Ionization Module Osnabruck (AIMOS): a 3D model to determine atmospheric ionization by energetic charged particles from different populations, J. Geophys. Res., 114, A06104, 2009. [CrossRef] [Google Scholar]
  • Wolfram Research Inc., Mathematica, Version 7.0, Champaign, IL, 2008. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.