Open Access
J. Space Weather Space Clim.
Volume 4, 2014
Article Number A02
Number of page(s) 8
Published online 07 January 2014
  • Abdu, M.A., J.H.A. Sobral, E.R. de Paula, and I.S. Batista, Magnetospheric disturbance effects on the equatorial ionization anomaly (EIA): an overview, J. Atmos. Sol.-Terr. Phys., 53, 757, 1991. [CrossRef] [Google Scholar]
  • Abraham-Schrauner, B., Determination of magnetohydrodynamic shock normal, J. Geophys. Res., 77, 736, 1972. [CrossRef] [Google Scholar]
  • Afraimovich, E.L., GPS global detection of the ionospheric response to solar flares, Radio Sci., 35, 1417, 2000. [CrossRef] [Google Scholar]
  • Araki, T., K. Fumato, T. Iguchi, and T. Kamei, Direct detection of solar wind dynamic pressure effect on ground geomagnetic fields, Geophys. Res. Lett., 20, 775, 1993. [CrossRef] [Google Scholar]
  • Araki, T., S. Tsunomura, and T. Kikuchi, Local time variation of the amplitude of geomagnetic sudden commencements (SC) and SC-associated polar cap potential, Earth Planets Space, 61, e13, 2009. [Google Scholar]
  • Blake, J.B., W.A. Kolasinski, R.W. Fillius, and E.G. Mullen, Injection of electrons and protons with energies of tens of MeV into L < 3 on March 24, 1991, Geophys. Res. Lett., 19, 821, 1992. [CrossRef] [Google Scholar]
  • Blanc, M., and A.D. Richmond, The ionospheric disturbance dynamo, J. Geophys. Res., 85, 1669, 1980. [CrossRef] [Google Scholar]
  • Burton, R.K., R.L. McPherron, and C.T. Russell, An empirical relationship between interplanetary conditions and Dst, J. Geophys. Res., 80, 4204, 1975. [NASA ADS] [CrossRef] [Google Scholar]
  • Clilverd, M.A., D. Danskin, T. Raita, and E.L. Spanswick, Energetic particle injection, acceleration, and loss during the geomagnetic disturbances which upset Galaxy 15, J. Geophys. Res., 117, A12213, DOI: 10.1029/2012JA018175, 2012. [Google Scholar]
  • Craven, J.D., C.T. Russell, and R.P. Lepping, Global auroral responses to magnetospheric compressions by shocks in the solar wind: two case studies. In: Sol. Wind-Mag. Coupl., edited by Y., Kamide, and J.A. Slavin, Terra. Sci, Tokyo, 367, 1986. [CrossRef] [Google Scholar]
  • DeForest, C.E., T.A. Howard, and D.J. McComas, Tracking coronal features from the low corona to Earth: a quantitative analysis of the 2008 December 12 coronal mass ejection, Astrophys. J., 769, 43, DOI: 10.1088/0004-637X/769/1/43, 2013. [CrossRef] [Google Scholar]
  • Dessler, A.J., and E.N. Parker, Hydromagnetic theory of magnetic storms, J. Geophys. Res., 64, 2239, 1959. [CrossRef] [Google Scholar]
  • Du, A.M., B.T. Tsurutani, and W. Sun, Solar wind energy input during prolonged, intense northward interplanetary magnetic fields: a new coupling function, J. Geophys. Res., 116, A12215, DOI: 10.1029/2011JA016718, 2011. [CrossRef] [Google Scholar]
  • Dungey, J.W., Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett., 6, 47, 1961. [NASA ADS] [CrossRef] [Google Scholar]
  • Echer, E., W.D. Gonzalez, B.T. Tsurutani, and A.L.C. Gonzalez, Interplanetary conditions causing intense geomagnetic storms (Dst ≤ −100 nT) during solar cycle 23 (1996–2006), J. Geophys. Res., 112, A05221, DOI: 10.1029/2007JA012744, 2008. [Google Scholar]
  • Echer, E., B.T. Tsurutani, and F.L. Guarnieri, Solar and interplanetary origins of the November 2004 superstorms, Adv. Space Res., 615, DOI: 10.1016/j.asr2009.05.003, 2009. [Google Scholar]
  • Echer, E., B.T. Tsurutani, and F.L. Guarnieri, Forward and reverse CIR shocks at 4-5 AU: Ulysses, Adv. Space Res., 45, 798, 2010. [NASA ADS] [CrossRef] [Google Scholar]
  • Farley, D.T., E. Bonelli, B.G. Fejer, and M.F. Larsen, The prereversal enhancement of the zonal electric field in the equatorial ionosphere, J. Geophys. Res., 91, 13,723, 1986. [CrossRef] [Google Scholar]
  • Farrugia, C.J., L.F. Burlaga, and R.P. Lepping, Magnetic clouds and the quiet-storm effect at earth. In: Magnetic Storms, edited by B.T., Tsurutani, et al., Geophys. Mon. Ser., 98, 91: Washington, DC, Amer. Geophys. Un. Press, 1997. [Google Scholar]
  • Galvin, A.B., F.M., Ipavich, G. Gloeckler, D. Hovestadt, S.J. Bame, B. Klecker, M. Scholer, and B.T. Tsurutani, Solar wind iron charge states preceding a driver plasma, J. Geophys. Res., 92 (A11), 12,069, 1987. [CrossRef] [Google Scholar]
  • Gonzalez, W.D., B.T. Tsurutani, A.L.C. Gonzalez, E.J. Smith, F. Tang, and S.-I. Akasofu, Solar wind-magnetosphere coupling during intense magnetic storms (1978–1979), J. Geophys. Res., 94, 8835, 1989. [CrossRef] [Google Scholar]
  • Gonzalez, W.D., J.A. Joselyn, Y. Kamide, H.W. Kroehl, G. Rostoker, B.T. Tsurutani, and V.M. Vasyliunas, What is a geomagnetic storm?, J. Geophys. Res., 99, 5771, 1994. [NASA ADS] [CrossRef] [Google Scholar]
  • Greenspan, M.E., C.E. Rasmussen, W.J. Burke, and M.A. Abdu, Equatorial density depletions observed at 840 km during the great magnetic storm of March 1989, J. Geophys. Res., 96, 13931, 1991. [CrossRef] [Google Scholar]
  • Hajra, R., E. Echer, B.T. Tsurutani, and W.D. Gonzalez, Solar cycle dependence of High-Intensity Long-Duration Continuous AE Activity (HILDCAA) events, relativistic electron predictors?, J. Geophys. Res.: Space Phys., 118, 1, DOI: 10.1002/jgra.50530, 2013. [CrossRef] [Google Scholar]
  • Heelis, R., Electrodynamics in the low and middle latitude ionosphere: a tutorial, J. Atmos. Sol.-Terr. Phys., 66, 825, 2004. [CrossRef] [Google Scholar]
  • Heppner, J.P., Note on the occurrence of world-wide SSCs during the onset of negative bays at College, Alaska, J. Geophys. Res., 60, 29, 1955. [CrossRef] [Google Scholar]
  • Huang, Y., A.D. Richmond, Y. Deng, P.C. Chamberlin, and L. Qian, et al., Wavelength dependence of solar irradiance enhancement during X-class flares and its influence on the upper atmosphere, to appear, J. Atmos. Sol.-Terr. Phys., 2013. [Google Scholar]
  • Illing, R.M.E., and A.J. Hundhausen, J. Geophys. Res., 91, 10951, 1986. [NASA ADS] [CrossRef] [Google Scholar]
  • Joselyn, J.A., and B.T. Tsurutani, A note on terminology: geomagnetic sudden impulses (SIs) and storm sudden commencements (SSCs), EOS, 71, 1808, 1990. [CrossRef] [Google Scholar]
  • Kawasaki, K., S.-I. Akasofu, F. Yasuhara, and C.-I. Meng, Storm sudden commencements and polar magnetic substorms, J. Geophys. Res., 76, 6781, 1971. [CrossRef] [Google Scholar]
  • Kozyra, J.U., W.B.IV Manchester, C.P. Escoubet, S.T. Lepri, M.W. Liemohn, W.D. Gonzalez, M.W. Thomsen, and B.T. Tsurutani, Earth’s collision with a solar filament on January 2005: overview, J. Geophys. Res. Space Phys., DOI: 10.1002/jgra.50567, 2013. [Google Scholar]
  • Li, X.-L., I. Roth, M. Temerin, J.R. Wygant, M.K. Hudson, and J.B. Blake, Simulation of the prompt energization and transport of radiation belt particles during the March 24, 1991 SSC, Geophys. Res. Lett., 20, 2423, 1993. [CrossRef] [Google Scholar]
  • Mannucci, A.J., B.T. Tsurutani, B.A. Iijima, A. Komjathy, A. Saito, W.D. Gonzalez, F.L. Guarnieri, J.U. Kozyra, and R. Skoug, Dayside global ionospheric response to the major interplanetary events of October 29-30 2003 “halloween storms”, Geophys. Res. Lett., 32, L12S02, DOI: 10.1029/2004GL021467, 2005. [CrossRef] [Google Scholar]
  • Proelss, G.W., et al., Magnetic storm associated perturbations of the upper atmosphere. In: Magnetic Storms, edited by B.T., Tsurutani, 98, Washington, DC: AGU, 227, 1997. [CrossRef] [Google Scholar]
  • Rostoker, G., and C.G. Falthammar, Relationship between changes in the interplanetary magnetic field and variations in the magnetic field at the Earth’s surface, J. Geophys. Res., 72, 5853, 1967. [CrossRef] [Google Scholar]
  • Sckopke, N., A general relation between energy of trapped particles and disturbed field near Earth, J. Geophys. Res., 71, 3125, 1966. [CrossRef] [Google Scholar]
  • Sheeley Jr., J.W. Harvey, N.R., and W.C. Feldman, A pictoral comparison of interplanetary magnetic field polarity, solar wind speed, and geomagnetic disturbances: 1973-1976, Sol. Phys., 49, 271, 1977. [NASA ADS] [CrossRef] [Google Scholar]
  • Smith, E.J., B.T. Tsurutani, and R.L. Rosenberg, Observations of the interplanetary sector structure up to heliographic latitudes of 16°: Pioneer 11, J. Geophys. Res., 83 (A2), 717, 1978. [NASA ADS] [CrossRef] [Google Scholar]
  • Tanaka, T., and K. Hirao, Effects of an electric field on the dynamical behavior of the ionospheres and its application to the storm time disturbances of the F-layer, J. Atmos. Terr. Phys., 35, 1443, 1973. [CrossRef] [Google Scholar]
  • Thomsen, M.F., J.E. Borovsky, R.M. Skoug, and C.W. Smith, Delivery of cold, dense plasma sheet material into the near-Earth region. J. Geophys. Res., 108 (A4), 1151, DOI: 10.1029/2002JA009544, 2003. [CrossRef] [Google Scholar]
  • Tsurutani, B.T., and R.P. Lin, Acceleraton of >47 keV ions and > 2 keV electrons by interplanetary shocks at 1 AU, J. Geophys. Res., 90, 1, 1985. [NASA ADS] [CrossRef] [Google Scholar]
  • Tsurutani, B.T., and W.D. Gonzalez, The cause of high-intensity long-duration continuous AE activity (HILDCAAs): interplanetary Alfven wave trains, Planet. Spa. Sci., 35, 405, 1987. [NASA ADS] [CrossRef] [Google Scholar]
  • Tsurutani, B.T., W.D. Gonzalez, F. Tang, S.-I. Akasofu, and E.J. Smith, Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978-1979), J. Geophys. Res., 93 (A8), 8519, 1988. [NASA ADS] [CrossRef] [Google Scholar]
  • Tsurutani, B.T., and W.D. Gonzalez, The causes of geomagnetic storms during solar maxima, EOS, 75, 49, 1994. [CrossRef] [Google Scholar]
  • Tsurutani, B.T., and W.D. Gonzalez, The efficiency of viscous interaction between the solar wind and the magnetosphere during intense northward IMF events, Geophys. Res. Lett., 22, 663, DOI: 10.1029/95GL00205, 1995. [CrossRef] [Google Scholar]
  • Tsurutani, B.T., W.D. Gonzalez, A.L.C. Gonzalez, F. Tang, J.K. Arballo, and M. Okada, Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle, J. Geophys. Res., 100 (A11), 21,717, 1995. [NASA ADS] [CrossRef] [Google Scholar]
  • Tsurutani, B.T., and W.D. Gonzalez, The interplanetary causes of magnetic storms: a review. In: Magnetic Storms, edited by B.T., Tsurutani, et al., 98: Washington, DC, Amer. Geophys. Un. Press, 77, 1997. [CrossRef] [Google Scholar]
  • Tsurutani, B.T., J.K. Arballo, G.S. Lakhina, C.M. Ho, J. Ajello, et al., The January 10, 1997 auroral zone hot spot, horseshoe aurora and first substorm: a CME loop? Geophys. Res. Lett., 25, 3047, 1998. [CrossRef] [Google Scholar]
  • Tsurutani, B.T., X.-Y. Zhou, V.M. Vasyliunas, G. Haerendel, J.K. Arballo, and G.S. Lakhina, Interplanetary shocks, magnetopause boundary layers and dayside auroras: the importance of a very small magnetospheric region, Surv. Geophys., 22, 101, 2001. [NASA ADS] [CrossRef] [Google Scholar]
  • Tsurutani, B.T., and X.-Y. Zhou, Interplanetary shock triggering of substorms: WIND and POLAR, Adv. Spa. Res., 31, 1063, 2003. [CrossRef] [Google Scholar]
  • Tsurutani, B.T., A. Mannucci, B. Iijima, M.A. Abdu, J.H.A. Sobral, et al., Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields, J. Geophys. Res., 109, A08302, DOI: 10.1029/2003JA010342, 2004. [CrossRef] [Google Scholar]
  • Tsurutani, B.T., D.L. Judge, F.L. Guarnieri, P. Gangopadhyay, A.R. Jones, et al., Geophys. Res. Lett., 32, L03S09, DOI: 10.1029/2004GL021475, 2005. [CrossRef] [Google Scholar]
  • Tsurutani, B.T., W.D. Gonzalez, A.L.C. Gonzalez, F.L. Guarnieri, N. Gopalswamy, et al., Corotating solar wind streams and recurrent geomagnetic activity: a review, J. Geophys. Res., 111, A07S01, DOI: 10.1029/2005JA011273, 2006a. [Google Scholar]
  • Tsurutani, B.T., R.L. McPherron, W.D. Gonzalez, G. Lu, N. Gopalswamy, and F.L. Guarnieri, Magnetic storms caused by corotating solar wind streams, Recurrent magnetic storms: corotating solar wind streams, 167, Am. Geophys. Un. Press, DOI: 10.1029/167GM03, 2006b. [CrossRef] [Google Scholar]
  • Tsurutani, B.T., E. Echer, F.L. Guarnieri, and J.U. Kozyra, CAWSES November 7-8, 2004, superstorm: complex solar and interplanetary features in the post-solar maximum phase, Geophys. Res. Lett., 35, L06S05, DOI: 10.1029/2007/GL031473, 2008. [CrossRef] [Google Scholar]
  • Tsurutani, B.T., K. Shibata, S.-I. Akasofu, and M. Oka, A two-step scenario for both solar flares and magnetospheric substorms: short duration energy storage, Earth Planets Space, 61, 1, 2009. [Google Scholar]
  • Vampola, A.K., and A. Korth, Electron drift echoes in the inner magnetosphere, Geophys. Res. Lett., 19, 625, 1992. [CrossRef] [Google Scholar]
  • Woods, T.N., G. Kopp, and P.C. Chamberlin, Contributions of the solar ultraviolet irradiance to the total solar irradiance during large flares, J. Geophys. Res., 111, A10S14, DOI: 10.1029/2005JA011507, 2006. [CrossRef] [PubMed] [Google Scholar]
  • Zhou, X., and B.T. Tsurutani, Rapid intensification and propagation of the dayside aurora: large scale interplanetary pressure pulses (fast shocks), Geophys. Res. Lett., 26, 1097, 1999. [CrossRef] [Google Scholar]
  • Zhou, X., and B.T. Tsurutani, Interplanetary shock triggering of nightside geomagnetic activity: substorms, pseudobreakups and quiescent events, J. Geophys. Res., 106, 18,957, 2001. [CrossRef] [Google Scholar]
  • Zhou, X.-Y., R.J. Strangeway, P.C. Anderson, D.G. Sibeck, B.T. Tsurutani, G. Haerendel, H.U. Frey, and J.K. Arballo, Shock aurora: FAST and DMSP observations, J. Geophys. Res., 108, 8019, DOI: 10.1029/2002JA009701, 2003. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.