Issue
J. Space Weather Space Clim.
Volume 5, 2015
Satellite mission concepts developed at the Alpbach 2013 Summer School on space weather
Article Number A3
Number of page(s) 14
DOI https://doi.org/10.1051/swsc/2015006
Published online 17 February 2015
  • Akasofu, S. I. Energy coupling between the solar wind and the magnetosphere. Space Sci. Rev., 28 (2), 121–190, 1981. [CrossRef]
  • Balogh, A. Planetary magnetic field measurements: missions and instrumentation. Space Sci. Rev., 152 (1–4), 23–97, 2010, DOI: 10.1007/s11214-010-9643-1. [CrossRef]
  • Biele, J., and S. Ulamec. Capabilities of Philae, the Rosetta Lander. Space Sci. Rev., 138 (1–4), 275–289, 2007, DOI: 10.1007/s11214-007-9278-z. [NASA ADS] [CrossRef]
  • Brueckner, G.E., R.A. Howard, M.J. Koomen, C.M. Korendyke, D.J. Michels, et al. The Large Angle Spectroscopic Coronagraph (LASCO). Sol. Phys., 162 (1–2), 357–402, 1995, DOI: 10.1007/BF00733434. [NASA ADS] [CrossRef]
  • Burlaga, L. Magnetic fields and plasmas in the inner heliosphere: Helios results. Planet. Space Sci., 49 (14–15), 1619–1627, 2001, DOI: 10.1016/S0032-0633(01)00098-8. [CrossRef]
  • Burton, R.K., R.L. McPherron, and C.T. Russell. An empirical relationship between interplanetary conditions and Dst. J. Geophys. Res., 80 (31), 4204–4214, 1975, DOI: 10.1029/JA080i031p04204. [NASA ADS] [CrossRef]
  • Dermott, J.C., Eagle-Picher Ind. Inc., Joplin, MO, USA, J.A. DeGruson, and L.E. Miller. Large Capacity NiH2, battery cells for advanced, high-power spacecraft applications. Energy Conversion Engineering Conference. IECEC 96., Proceedings of the 31st Intersociety, 1, 380–383, 1996, DOI: 10.1109/IECEC.1996.552911. [CrossRef]
  • DeRosa, M.L., A.S. Brun, and J.T. Hoeksema. Solar magnetic field reversals and the role of dynamo families. ApJ, 757, 96–112, 2012, DOI: 10.1088/0004-637X/757/1/96. [NASA ADS] [CrossRef]
  • Domingo, V., B. Fleck, and A. Poland. SOHO: The Solar and Heliospheric Observatory. Space Sci. Rev., 72 (1–2), 81–84, 1995, DOI: 10.1007/BF00733425. [NASA ADS] [CrossRef]
  • Dungey, J. W. Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett., 6 (2), 47–48, 1961, DOI: 10.1103/PhysRevLett.6.47. [NASA ADS] [CrossRef]
  • Fortescue, P., G. Swinerd, and J. Stark. Spacecraft Systems Engineering. 4th Edition Wiley, West Sussex, UK, ISBN: 978-0-470-75012-4, 2011. [CrossRef]
  • Glaßmeier, K.H., and M. Scholer. Plasmaphysik im Sonnensystem. BI Publisher Wetenschap, Mannheim (Germany), 378 p., ISBN: 3-411-15151-X, 1991.
  • Gonzalez, W.D., J.A. Joselyn, Y. Kamide, H.W. Kroehl, G. Rostoker, B.T. Tsurutani, and V.M. Vasyliunas. What is a geomagnetic storm? J. Geophys. Res., 99, 5771–5792, 1994, DOI: 10.1029/93JA02867. [NASA ADS] [CrossRef]
  • Gopalswamy, N. Coronal mass ejections: initiation and detection. Adv. Space Res., 31 (4), 869–881, 2003, DOI: 10.1016/S0273-1177(02)00888-8. [CrossRef]
  • Gopalswamy, N. Solar connections of geoeffective magnetic structures. J. Atmos. Sol. Terr. Phys., 4th Asia Oceania Geosciences Society meeting, 70 (17), 2078–2100, 2008, DOI: 10.1016/j.jastp.2008.06.010. [NASA ADS] [CrossRef]
  • Gopalswamy, N., M. Shimojo, W. Lu, S. Yashiro, K. Shibasaki, and R. A. Howard. On coronal streamer changes. Adv. Space Res., 33 (5), 676–680, 2004, DOI: 10.1016/S0273-1177(03)00236-9. [NASA ADS] [CrossRef]
  • Gosling, J.T., S.J. Bame, D.J. McComas, and J.L. Phillips. Coronal mass ejections and large geomagnetic storms. Geophys. Res. Lett., 17 (7), 901–904, 1990, DOI: 10.1029/GL017i007p00901. [NASA ADS] [CrossRef]
  • Grasset, O., M.K. Dougherty, A. Coustenis, E.J. Bunce, C. Erd, et al. JUpiter ICy moons Explorer (JUICE): an ESA mission to orbit Ganymede and to characterise the Jupiter system. Planet. Space Sci., 78, 1–21, 2013, DOI: 10.1016/j.pss.2012.12.002. [NASA ADS] [CrossRef]
  • Gulisano, A.M., P. Démoulin, S. Dasso, and L. Rodriguez. Expansion of magnetic clouds in the outer heliosphere. A&A, 543, A107, 2012, DOI: 10.1051/0004-6361/201118748. [NASA ADS] [CrossRef] [EDP Sciences]
  • Hablani, H.B. Sun-tracking commands and reaction wheel sizing with configuration optimization. Journal of Guidance, Control, and Dynamics, 17 (4), 805–814, 1994. [CrossRef]
  • Howard, R.A., N.R. Sheeley Jr, M.J. Koomen, and D.J. Michels. Coronal mass ejections: 1975–1981. J. Geophys. Res., 90, 8173–8191, 1985, DOI: 10.1029/JA090iA09p08173. [NASA ADS] [CrossRef]
  • Howard, R.A., J.D. Moses, A. Vourlidas, J.S. Newmark, D.G. Socker, et al. Sun Earth connection coronal and heliospheric investigation (SECCHI). Space Sci. Rev., 136 (1–4), 67–115, 2008, DOI:10.1007/s11214-008-9341-4. [NASA ADS] [CrossRef]
  • Hundhausen, A.J., C.B. Sawyer, L. House, R.M.E. Illing, and W.J. Wagner. Coronal mass ejections observed during the solar maximum mission – latitude distribution and rate of occurrence. J. Geophys. Res., 89, 2639–2646, 1984. [NASA ADS] [CrossRef]
  • Kaiser, M.L., T.A. Kucera, J.M. Davila, O.C. St. Cyr, M. Guhathakurta, and E. Christian. The STEREO mission: an introduction. Space Sci. Rev., 136, 5–16, 2008, DOI: 10.1007/s11214-007-9277-0. [NASA ADS] [CrossRef]
  • Lindsay, G.M., C.T. Russell, and J.G. Luhmann. Predictability of Dst index based upon solar wind conditions monitored inside 1 AU. J. Geophys. Res. A: Space Phys., 104 (A5), 10335–10344, 1999, DOI: 10.1029/1999JA900010. [CrossRef]
  • Luhmann, J.G., S.C. Solomon, J.A. Linker, J.G. Lyon, Z. Mikic, D. Odstrcil, W. Wang, and M. Wittberger. Coupled model simulation of a Sun-to-Earth space weather event. J. Atmos. Sol. Terr. Phys., 66 (15), 1243–1256, 2004, DOI: 10.1016/j.jastp.2004.04.005. [CrossRef]
  • Manoharan, P.K. Evolution of coronal mass ejections in the inner heliosphere: a study using white-light and scintillation image. Sol. Phys., 235, 345–368, 2006, DOI: 10.1007/s11207-006-0100-y. [NASA ADS] [CrossRef]
  • Manoharan, P.K. Ooty interplanetary scintillation – remote-sensing observations and analysis of coronal mass ejections in the heliosphere. Sol. Phys., 265, 137–157, 2010, DOI: 10.1007/s11207-010-9593-5. [NASA ADS] [CrossRef]
  • Marsch, E., R. Marsden, R. Harrison, R. Wimmer-Schweingruber, and B. Fleck. Solar Orbiter, mission profile, main goals and present status. Adv. Space Res., 36, 1360–1366, 2005, DOI: 10.1016/j.asr.2004.11.012. [NASA ADS] [CrossRef]
  • Meyer-Vernet, N. Basics of the solar wind, Cambridge Atmospheric and Space Science Series, Cambridge University Press, 2007. [CrossRef]
  • Mierla, M., B. Inhester, A. Antunes, Y. Bourisier, J.P. Byrne, et al. On the 3-D reconstruction of coronal mass ejections using coronagraph data. Ann. Geophys., 28, 1–13, 2010, DOI: 10.5194/angeo-28-203-2010. [NASA ADS] [CrossRef]
  • Möstl, C., C.J. Farrugia, E.K.J. Kilpua, L.K. Jian, Y. Liu, et al. Multi-point shock and flux rope analysis of multiple interplanetary coronal mass ejections, around 2010 August 1 in the inner heliosphere. ApJ, 758, 18, 2012, DOI: 10.1088/0004-637X/758/1/10. [NASA ADS] [CrossRef]
  • Noschese, P., M. Milano, E.F. Zampolini, G. Mascolo, D. Landi, et al. Bepicolombo mission to Mercury, design status of the high temperature high gain antenna, in: 32nd ESA Antenna Workshop on Antennas for Space Applications, Noordwijk, The Netherlands, 2010.
  • Ogilvie, K., D. Chornay, R. Fritzenreiter, F. Hunsaker, J. Keller, et al. SWE, a comprehensive plasma instrument for the WIND spacecraft. Space Sci. Rev., 71, 55–77, 1995, DOI: 10.1007/BF00751326. [NASA ADS] [CrossRef]
  • Reitz, G. Characteristic of the radiation field in low Earth orbit and in deep space. Z. Med. Phys., 18 (4), 233–243, 2008, DOI: 10.1016/j.zemedi.2008.06.015. [CrossRef]
  • Richardson, I.G., and H.V. Cane. Identification of interplanetary coronal mass ejections at 1 AU using multiple solar wind plasma composition anomalies. J. Geophys. Res., 109, A09104, 2004, DOI: 10.1029/2004JA010598. [NASA ADS] [CrossRef]
  • Smith, C.W., J. L’Heureux, N.F. Ness, M.H. Acuña, L.F. Burlaga, J. Scheifele, C. Russell, R. Mewaldt, and T. Rosenvinge, Editors, The Ace Magnetic Fields Experiment. Space Sci. Rev., 86 (1), 613–632, 1998, DOI: 10.1023/A:1005092216668. [NASA ADS] [CrossRef]
  • St. Cyr, O.C., M.A. Mesarch, H.M. Maldonado, D.C. Folta, A.D. Harper, et al. Space Weather Diamond: a four spacecraft monitoring system. J. Atmos. Sol. Terr. Phys., 62 (14), 1251–1255, 2000, DOI: 10.1016/S1364-6826(00)00069-9. [CrossRef]
  • Thernisien, A., A. Vourlidas, and R. Howard, Forward modeling of coronal mass ejections using STEREO/SECCHI data. Sol. Phys., 256 (1–2), 111–130, 2009, DOI: 10.1007/s11207-009-9346-5. [NASA ADS] [CrossRef]
  • Titov, D.V., H. Svedhem, D. Koschny, R. Hoofs, S. Barabash, et al. Venus express science planning. Planet. Space Sci., 54 (13–14), 1279–1297, 2006, DOI: 10.1016/j.pss.2006.04.017. [CrossRef]
  • Tóth, G., I.V. Sokolov, T.I. Gombosi, D.R. Chesney, C.R. Clauer, et al. Space weather modeling framework: a new tool for the space science community. J. Geophys. Res. A: Space Phys., 110, A12, 2005, DOI: 10.1029/2005JA011126.
  • Wagner, M., S. Airey, G. Piret, and P. Le. New Reaction Wheel Characterisation Test Facility (RCF), in 35th Annual AAS Guidance and Control Conference, AAS 12-077, Breckenridge, Colorado, 2012.
  • Wertz, J.R., and W.J. Larson. Space Mission Analysis and Design, Third Edition, Space Technology Library, ISBN: 978-1881883104, 1999.
  • West, J.L. NOAA/DoD/NASA geostorm warning mission, in JPL D-13986, Jet Propulsion Lab, California Institute of Technology, Pasadena, CA, 1996.
  • West, J. The geostorm warning mission: enhanced opportunity based on new technology, in 14th AAS/AIAA Space Flight Mechanics Conference, Maui, HI, AAS. Vol. 102, 2004.
  • Zhang, T.L., G. Berghofer, W. Magnes, M. Delva, W. Baumjohann, et al. MAG: the fluxgate magnetometer of Venus express. ESA Special Publication, SP 1295, 1–10, 2007.
  • COST 724 final report. Developing the scientific basis for monitoring, modelling and predicting Space Weather, in Introduction to COST 724, 11, 2009.
  • SCI-PA/2007/022. Margin Philosophy for Science Assessment Studies, ESA, ESTEC, 2007.
  • Solar Orbiter Definition Study Report (Red Book), ESA/SRE, 14, Issue 1.0, 2011.
  • Space project management – Risk management, Eurpean Cooperation for Space Standardization ECSS, ECSS-M-ST-80, 2008.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.