Issue |
J. Space Weather Space Clim.
Volume 5, 2015
Satellite mission concepts developed at the Alpbach 2013 Summer School on space weather
|
|
---|---|---|
Article Number | A4 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/swsc/2015003 | |
Published online | 17 February 2015 |
- Aschwanden, M.J., J.-P. Wülser, N. Nitta, and J. Lemen. Solar stereoscopy with STEREO/EUVI A and B spacecraft from small (6) to large (170) spacecraft separation angles. Sol. Phys., 281, 101–119, 2012, DOI: 10.1007/s11207-012-0092-8. [Google Scholar]
- Bemporad, A. Stereoscopic reconstruction from STEREO/EUV imagers data of the three-dimensional shape and expansion of an erupting prominence. Astrophys. J., 701, 298–305, 2009, DOI: 10.1088/0004-637X/701/1/298. [NASA ADS] [CrossRef] [Google Scholar]
- Borovsky, J.E., and M.H. Denton. Differences between CME-driven storms and CIR-driven storms. J. Geophys. Res., 111, 7, 2006, DOI: 10.1029/2005JA011447. [Google Scholar]
- Carr, C.M., T.S. Horbury, A. Balogh, W. Baumjohann, B. Bavassano, et al. A magnetometer for the solar orbiter mission. Proceedings of the Second Solar Orbiter Workshop, 41, ISBN: 92-9291-205-2, 2007. [Google Scholar]
- Chen, P.F. Coronal mass ejections: models and their observational basis. Living Rev. Sol. Phys., 8, 1, 2011, DOI: 10.12942/lrsp-2011-1. [Google Scholar]
- Dal Lago, A., W.D. Gonzalez, A. De Lucas, C.R. Braga, L.R. Vieira, T.R.C. Stekel, and M. Rockenbach. CME dynamics using coronagraph and interplanetary ejecta data. Adv. Space Res., 51, 1942–1948, 2013, DOI: 10.1016/j.asr.2012.11.023. [CrossRef] [Google Scholar]
- Davies, J.A., C.H. Perry, R.M.G.M. Trines, R.A. Harrison, N. Lugaz, C. Möstl, Y.D. Liu, and K. Steed. Establishing a stereoscopic technique for determining the kinematic properties of solar wind transients based on a generalized self-similarly expanding circular geometry. Astrophys. J., 777, 167, 2013, DOI: 10.1088/0004-637X/777/2/167. [Google Scholar]
- Davis, C.J., C.A. de Koning, J.A. Davies, D. Biesecker, G. Millward, et al. A comparison of space weather analysis techniques used to predict the arrival of the Earth-directed CME and its shockwave launched on 8 April 2010. Space Weather, 9, S01005, 2011, DOI: 10.1029/2010SW000620. [CrossRef] [Google Scholar]
- Fan, Y. Magnetic fields in the solar convection zone. Living Rev. Sol. Phys., 6, 4, 2009, DOI: 10.12942/lrsp-2009-4. [Google Scholar]
- Frazin, R.A., and F. Kamalabadi. On the use of total brightness measurements for tomography of the solar corona. Astrophys. J., 628, 1061–1069, 2005, DOI: 10.1086/430846. [Google Scholar]
- Gandorfer, A., S.K. Solanki, J. Woch, V. Martnez Pillet, A. Álvarez Herrero, and T. Appourchaux. The Solar Orbiter Mission and its Polarimetric and Helioseismic Imager (SO/PHI). J. Phys.: Conf. Ser., 271, 2086, 2011, DOI: 10.1088/1742-6596/271/1/012086. [Google Scholar]
- Gloeckler, G., J. Cain, F.M. Ipavich, E.O. Tums, P. Bedini, et al. Investigation of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ACE spacecraft. Space. Sci. Rev., 86, 497–539, 1998, DOI: 10.1023/A:1005036131689. [CrossRef] [Google Scholar]
- Gold, R.E., S.M. Krimigis, S.E. Hawkins III, D.K. Haggerty, D.A. Lohr, E. Fiore, T.P. Armstrong, G. Holland, and L.J. Lanzerotti. Electron, proton, and alpha monitor on the advanced composition explorer spacecraft. Space Sci. Rev., 86, 541–562, 1998, DOI: 10.1023/A:1005088115759. [Google Scholar]
- Gómez-Herrero, R., O. Malandraki, N. Dresing, E. Kilpua, B. Heber, A. Klassen, R. Müller-Mellin, and R.F. Wimmer-Schweingruber. Spatial and temporal variations of CIRs: Multi-point observations by STEREO. J. Atmos. Sol. Terr. Phys., 73, 551–565, 2011, DOI: 10.1016/j.jastp.2010.11.017. [Google Scholar]
- Gopalswamy, N., A. Lara, R.P. Lepping, M.L. Kaiser, D. Berdichevsky, and O.C. St Cyr. Interplanetary acceleration of coronal mass ejections. Geophys. Res. Lett., 27, 145–148, 2000, DOI: 10.1029/1999GL003639. [NASA ADS] [CrossRef] [Google Scholar]
- Gosling, J.T. In-Situ observations of coronal mass ejections in interplanetary space. In: Eruptive Solar Flares. Proceedings of Colloquium #133 of the International Astronomical Union, Berlin, Heidelberg, Springer Berlin Heidelberg, 258–267, 1992, ISBN 978-3-540-55246-8. DOI: 10.1007/3-540-55246-4_107. [CrossRef] [Google Scholar]
- Howard, R.A., J.D. Moses, A. Vourlidas, J.S. Newmark, D.G. Socker, et al. Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI), Space. Sci. Rev., 136, 67–115, 2008, DOI: 10.1007/s11214-008-9341-4. [CrossRef] [Google Scholar]
- Howard, T.A., and S.J. Tappin. Three-dimensional reconstruction of two solar coronal mass ejections using the STEREO spacecraft. Sol. Phys., 252, 373–383, 2008, DOI: 10.1007/s11207-008-9262-0. [CrossRef] [Google Scholar]
- Kahler, S.W., H. Aurass, G. Mann, and A. Klassen. The production of near-relativistic electrons by CME-driven shocks. Coronal and Stellar Mass Ejections, 226, 338–345, 2005, DOI: 10.1017/S1743921305000839. [Google Scholar]
- Liu, Y.D., J.G. Luhmann, P. Kajdič, E.K.J. Kilpua, N. Lugaz, et al. Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections. Nature Communications, 5, 3481, 2014, DOI: 10.1038/ncomms4481. [Google Scholar]
- Lugaz, N., P. Kintner, C. Möstl, L.K. Jian, C.J. Davis, and C.J. Farrugia. Heliospheric observations of STEREO-directed coronal mass ejections in 2008–2010: Lessons for future observations of earth-directed CMEs. Sol. Phys., 279, 497–515, 2012, DOI: 10.1007/s11207-012-0007-8. [NASA ADS] [CrossRef] [Google Scholar]
- Manoharan, P.K. Evolution of coronal mass ejections in the inner heliosphere: A study using white-light and scintillation images. Sol. Phys., 235, 345–368, 2006, DOI: 10.1007/s11207-006-0100-y. [NASA ADS] [CrossRef] [Google Scholar]
- Manoharan, P.K., and A. Mujiber Rahman, Coronal mass ejections – Propagation time and associated internal energy, J. Atmos. Sol. Terr. Phys., 73, 671–677, 2011, DOI: 10.1016/j.jastp.2011.01.017. [NASA ADS] [CrossRef] [Google Scholar]
- Mason, G.M., M.I. Desai, U. Mall, A. Korth, R. Bucik, T.T. von Rosenvinge, and K.D. Simunac. In situ observations of CIRs on STEREO, wind, and ACE during 2007–2008. Sol. Phys., 256, 393–408, 2009, DOI: 10.1007/s11207-009-9367-0. [NASA ADS] [CrossRef] [Google Scholar]
- McComas, D.J., S.J. Bame, P. Barker, W.C. Feldman, J.L. Phillips, P. Riley, and J.W. Griffee. Solar Wind Electron Proton Alpha Monitor (SWEPAM) for the advanced composition explorer. Space Sci. Rev., 86, 563–612, 1998, DOI: 10.1023/A:1005040232597. [NASA ADS] [CrossRef] [Google Scholar]
- Möstl, C., K. Amla, J.R. Hall, P.C. Liewer, E.M. De Jong, et al. Connecting speeds, directions and arrival times of 22 coronal mass ejections from the Sun to 1 Au. Astrophys. J., 787, 119, 2014, DOI: 10.1088/0004-637X/787/2/119. [CrossRef] [Google Scholar]
- Nitta, N.V., M.J. Aschwanden, S.L. Freeland, J.R. Lemen, J.P. Wülser, and D.M. Zarro. The association of solar flares with coronal mass ejections during the extended solar minimum. Sol. Phys., 289, 1257–1277, 2013, DOI: 10.1007/s11207-013-0388-3. [CrossRef] [Google Scholar]
- Pulkkinen, T. Space weather: terrestrial perspective. Living Rev. Sol. Phys., 4, 1, 2007, DOI: 10.12942/lrsp-2007-1. [Google Scholar]
- Richardson, I.G. Energetic particles and corotating interaction regions in the solar wind. Space Sci. Rev., 111, 267–376, 2004, DOI: 10.1023/B:SPAC.0000032689.52830.3e. [NASA ADS] [CrossRef] [Google Scholar]
- Rouillard, A.P., N.R. Sheeley, A. Tylka, A. Vourlidas, C.K. Ng, et al. The longitudinal properties of a solar energetic particle event investigated using modern solar imaging. Astrophys. J., 752, 44, 2012, DOI: 10.1088/0004-637X/752/1/44. [Google Scholar]
- Sauvaud, J.A., D. Larson, C. Aoustin, D. Curtis, J.L. Médale, et al. The IMPACT Solar Wind Electron Analyzer (SWEA). Space Sci. Rev., 136, 227–239, 2008, DOI: 10.1007/s11214-007-9174-6. [NASA ADS] [CrossRef] [Google Scholar]
- Schwenn, R. Space weather: the solar perspective. Living Rev. Sol. Phys., 3, 2, 2006, DOI: 10.12942/lrsp-2006-2. [Google Scholar]
- Shibata, K., and T. Magara. Solar flares: magnetohydrodynamic processes. Living Rev. Sol. Phys., 8, 6, 2011.DOI: 10.12942/lrsp-2011-6. [Google Scholar]
- Simnett, G.M., E.C. Roelof, and D.K. Haggerty. The acceleration and release of near-relativistic electrons by coronal mass ejections. Astrophys. J., 579, 854–862, 2002, DOI: 10.1086/342871. [Google Scholar]
- Smith, Z., W. Murtagh, and C. Smithtro. Relationship between solar wind low-energy energetic ion enhancements and large geomagnetic storms. J. Geophys. Res., 109, 1110, 2004, DOI: 10.1029/2003JA010044. [CrossRef] [Google Scholar]
- Stone, E.C., A.M. Frandsen, R.A. Mewaldt, E.R. Christian, D. Margolies, J.F. Ormes, and F. Snow. The advanced composition explorer. Space Sci. Rev., 86, 1–22, 1998, DOI: 10.1023/A:1005082526237. [Google Scholar]
- Tang, Y.Q., and G.M. Le. Statistical analysis of soft X-ray flares during the 23rd Solar Cycle. International Cosmic Ray Conference, 1, 5, 2005. [Google Scholar]
- Tappin, S.J., and T.A. Howard. Direct observation of a corotating interaction region by three spacecraft. Astrophys. J., 702, 862–870, 2009, DOI: 10.1088/0004-637X/702/2/862. [CrossRef] [Google Scholar]
- Webb, D.F., and T.A. Howard. Coronal mass ejections: observations. Living Rev. Sol. Phys., 9, 3, 2012, DOI: 10.12942/lrsp-2012-3. [Google Scholar]
- Wertz, J.R., and W.J. Larson. Space mission analysis and design. Microcosm, 3rd illustrated edn. Kluwer, 2003. [Google Scholar]
- Yashiro, S., N. Gopalswamy, S. Akiyama, G. Michalek, and R.A. Howard. Visibility of coronal mass ejections as a function of flare location and intensity. J. Geophys. Res., 110, 12, 2005, DOI: 10.1029/2005JA011151. [Google Scholar]
- Yashiro, S., N. Gopalswamy, G. Michalek, O.C. St Cyr, S.P. Plunkett, N.B. Rich, and R.A. Howard. A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res., 109, 7105, 2004, DOI: 10.1029/2003JA010282. [NASA ADS] [CrossRef] [Google Scholar]
- Zhang, J., I.G. Richardson, D.F. Webb, N. Gopalswamy, E. Huttunen, et al. Solar and interplanetary sources of major geomagnetic storms (Dst ≤ -100 nT) during 1996–2005. J. Geophys. Res., 112, 10,102, 2007, DOI: 10.1029/2007JA012321. [Google Scholar]
- Zhukov, A.N., and F. Auchere. On the nature of EIT waves, EUV dimmings and their link to CMEs. A&A, 427, 705–716, 2004, DOI: 10.1051/0004-6361:20040351. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Zuccarello, F., L. Balmaceda, G. Cessateur, H. Cremades, S.L. Guglielmino, et al. Solar activity and its evolution across the corona: recent advances. J. Space Weather Space Clim., 3, 18, 2013, DOI: 10.1051/swsc/2013039. [Google Scholar]
- Zwickl, R.D., K.A. Doggett, S. Sahm, W.P. Barrett, R.N. Grubb, et al. The NOAA Real-Time Solar-Wind (RTSW) system using ACE data. Space Sci. Rev., 86, 633–648, 1998, DOI: 10.1023/A:1005044300738. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.