Issue
J. Space Weather Space Clim.
Volume 5, 2015
Statistical Challenges in Solar Information Processing
Article Number A20
Number of page(s) 12
DOI https://doi.org/10.1051/swsc/2015021
Published online 07 July 2015
  • Billings, D.E. A guide to the solar corona. Academic Press, New York, 150, 1966. [Google Scholar]
  • Burlaga, L., R. Fitzenreiter, R. Lepping, K. Ogilvie, A. Szabo, et al. A magnetic cloud containing prominence material – January 1997. J. Geophys. Res., 103, 277, 1998. [NASA ADS] [CrossRef] [Google Scholar]
  • Burlaga, L.F.E. Magnetic Clouds. In: R. Schwenn, and E. Marsch, Editors, Physics of the Inner Heliosphere II, Springer, Berlin, 1–2, 1991. [CrossRef] [Google Scholar]
  • Cargill, P.J. On the aerodynamic drag force acting on interplanetary coronal mass ejections. Sol. Phys., 221, 135–149, 2004. [NASA ADS] [CrossRef] [Google Scholar]
  • Cargill, P.J., J. Chen, D.S. Spicer, and S.T. Zalesak. Magnetohydrodynamic simulations of the motion of magnetic flux tubes through a magnetized plasma. J. Geophys. Res., 101, 4855–4870, 1996. [Google Scholar]
  • Colaninno, R.C., A. Vourlidas, and C.C. Wu. Quantitative comparison of methods for predicting the arrival of coronal mass ejections at Earth based on multiview imaging. J. Geophys. Res., 118, 6866–6879, 2013. [Google Scholar]
  • Crooker, N.U., and T.S. Horbury. Solar imprint on ICMEs, their magnetic connectivity, and heliospheric evolution. Space Sci. Rev., 123, 93–109, 2006. [Google Scholar]
  • Davies, J.A., R.A. Harrison, A.P. Rouillard, N.R. Sheeley, C.H. Perry, et al. A synoptic view of solar transient evolution in the inner heliosphere using the Heliospheric Imagers on STEREO. Geophys. Res. Lett., 36, L02102, 2009. [NASA ADS] [CrossRef] [Google Scholar]
  • Davies, J.A., R.A. Harrison, C.H. Perry, C. Möstl, N. Lugaz, et al. A self-similar expansion model for use in solar wind transient propagation studies. Astrophys. J., 750, 23, 2012. [Google Scholar]
  • Davies, J.A., C.H. Perry, R.M.G.M. Trines, R.A. Harrison, N. Lugaz, C. Möstl, Y.D. Liu, and K. Steed. Establishing a stereoscopic technique for determining the kinematic properties of solar wind transients based on a generalised self-similarly expanding circular geometry. Astrophys. J., 777, 167, 2013. [Google Scholar]
  • Davis, C.J., J.A. Davies, M. Lockwood, A.P. Rouillard, C.J. Eyles, and R.A. Harrison. Stereoscopic imaging of an Earth-impacting solar coronal mass ejection: a major milestone for the STEREO mission. Geophys. Res. Lett., 36, L08102, 2009. [Google Scholar]
  • Davis, C.J., J. Kennedy, and J.A. Davies. Assessing the accuracy of CME Speed and trajectory estimates from STEREO observations through a comparison of independent methods. Sol. Phys., 263, 209–222, 2010. [NASA ADS] [CrossRef] [Google Scholar]
  • DeForest, C.E., T.A. Howard, and S.J. Tappin. Observations of detailed structure in the solar wind at 1 AU with STEREO/HI-2. Astrophys. J., 738, 103, 2011. [Google Scholar]
  • Eyles, C.J., R.A. Harrison, C.J. Davis, N.R. Waltham, B.M. Shaughnessy, et al. The heliospheric imagers onboard the STEREO mission. Sol. Phys., 254, 387–445, 2009. [NASA ADS] [CrossRef] [Google Scholar]
  • Forsyth, R.J., V. Bothmer, C. Cid, N.U. Crooker, T.S. Horbury, et al. ICMEs in the inner heliosphere: origin, evolution and propagation effects. report of working group G. Space Sci. Rev., 123, 383–416, 2006. [NASA ADS] [CrossRef] [Google Scholar]
  • Gloeckler, G., J. Cain, F.M. Ipavich, E.O. Tums, P. Bedini, et al. Investigation of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ACE spacecraft. Space Sci. Rev., 86, 497–539, 1998. [NASA ADS] [CrossRef] [Google Scholar]
  • Gopalswamy, N., Y. Hanaoka, T. Kosugi, R.P. Lepping, J.T. Steinberg, et al. On the relationship between coronal mass ejections and magnetic clouds. Geophys. Res. Lett., 25, 2485–2488, 1998. [NASA ADS] [CrossRef] [Google Scholar]
  • Gopalswamy, N., A. Dal Lago, S. Yashiro, and S. Akiyama. The expansion and radial speeds of coronal mass ejections. Central European Astrophysical Bulletin, 33, 115–124, 2009. [Google Scholar]
  • Harrison, R.A., J.A. Davies, C. Möstl, Y. Liu, M. Temmer, et al. An analysis of the origin and propagation of the multiple coronal mass ejections of 2010 August 1. Astrophys. J., 750, 45, 2012. [Google Scholar]
  • Howard, R.A., J.D. Moses, A. Vourlidas, J.S. Newmark, D.G. Socker, et al. Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev., 136, 67–115, 2008. [NASA ADS] [CrossRef] [Google Scholar]
  • Howard, T.A. Three-dimensional reconstruction of coronal mass ejections using heliospheric imager data. J. Atmos. Sol. Terr. Phys., 73, 1242–1253, 2011. [NASA ADS] [CrossRef] [Google Scholar]
  • Howard, T.A., and C.E. DeForest. Inner heliospheric flux rope evolution via imaging of coronal mass ejections. Astrophys. J., 746, 64, 2012. [Google Scholar]
  • Howard, T.A., and S.J. Tappin. Interplanetary coronal mass ejections observed in the heliosphere: 1. review of theory. Space Sci. Rev., 147, 31–54, 2009. [Google Scholar]
  • Howard, T.A., D.F. Webb, S.J. Tappin, D.R. Mizuno, and J.C. Johnston. Tracking halo coronal mass ejections from 0–1 AU and space weather forecasting using the solar mass ejection imager (SMEI). J. Geophys. Res., 111, A04105, 2006. [Google Scholar]
  • Illing, R.M.E., and A.J. Hundhausen. Observation of a coronal transient from 1.2 to 6 solar radii. J. Geophys. Res., 90, 275–282, 1985. [Google Scholar]
  • Joshi, A.D., and N. Srivastava. Kinematics of two eruptive prominences observed by EUVI/STEREO. Astrophys. J., 730, 104, 2011. [NASA ADS] [CrossRef] [Google Scholar]
  • Kahler, S.W., and D.F. Webb. V arc interplanetary coronal mass ejections observed with the solar mass ejection imager. J. Geophys. Res., 112, A09103, 2007. [Google Scholar]
  • Klein, L.W., and L.F. Burlaga. Interplanetary magnetic clouds at 1 AU. J. Geophys. Res., 87, 613–624, 1982. [Google Scholar]
  • Lemen, J.R., A.M. Title, D.J. Akin, P.F. Boerner, C. Chou, et al. The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Sol. Phys., 275, 17–40, 2012. [NASA ADS] [CrossRef] [Google Scholar]
  • Lepping, R.P., L.F. Burlaga, and J.A. Jones. Magnetic field structure of interplanetary magnetic clouds at 1 AU. J. Geophys. Res., 95, 11957–11965, 1990. [NASA ADS] [CrossRef] [Google Scholar]
  • Lepri, S.T., and T.H. Zurbuchen. Direct observational evidence of filament material within interplanetary coronal mass ejections. Astrophys. J. Lett., 723, L22–L27, 2010. [CrossRef] [Google Scholar]
  • Liu, Y., J.A. Davies, J.G. Luhmann, A. Vourlidas, S.D. Bale, and R.P. Lin. Geometric triangulation of imaging observations to track coronal mass ejections continuously out to 1 AU. Astrophys. J. Lett., 710, L82–L87, 2010a. [Google Scholar]
  • Liu, Y., A. Thernisien, J.G. Luhmann, A. Vourlidas, J.A. Davies, R.P. Lin, and S.D. Bale. Reconstructing coronal mass ejections with coordinated imaging and in situ observations: global structure, kinematics, and implications for space weather forecasting. Astrophys. J., 722, 1762–1777, 2010b. [Google Scholar]
  • Liu, Y., J.G. Luhmann, S.D. Bale, and R.P. Lin. Solar source and heliospheric consequences of the 2010 April 3 coronal mass ejection: a comprehensive view. Astrophys. J., 734, 84, 2011. [CrossRef] [Google Scholar]
  • Liu, Y.D., J.G. Luhmann, N. Lugaz, C. Möstl, J.A. Davies, S.D. Bale, and R.P. Lin. On sun-to-earth propagation of coronal mass ejections. Astrophys. J., 769, 45, 2013. [Google Scholar]
  • Lopez, R.E. Solar cycle invariance in solar wind proton temperature relationships. J. Geophys. Res., 92, 11189–11194, 1987. [CrossRef] [Google Scholar]
  • Lugaz, N. Accuracy and limitations of fitting and stereoscopic methods to determine the direction of coronal mass ejections from heliospheric imagers observations. Sol. Phys., 267, 411–429, 2010. [CrossRef] [Google Scholar]
  • Lugaz, N., A. Vourlidas, and I.I. Roussev. Deriving the radial distances of wide coronal mass ejections from elongation measurements in the heliosphere – application to CME-CME interaction. Ann. Geophys., 27, 3479–3488, 2009. [NASA ADS] [CrossRef] [Google Scholar]
  • Lugaz, N., J.N. Hernandez-Charpak, I.I. Roussev, C.J. Davis, A. Vourlidas, and J.A. Davies. Determining the azimuthal properties of coronal mass ejections from multi-spacecraft remote-sensing observations with STEREO SECCHI. Astrophys. J., 715, 493–499, 2010. [CrossRef] [Google Scholar]
  • Manoharan, P.K. Evolution of coronal mass ejections in the inner heliosphere: a study using white-light and scintillation images. Sol. Phys., 235, 345–368, 2006. [NASA ADS] [CrossRef] [Google Scholar]
  • Michalek, G., N. Gopalswamy, and S. Yashiro. Expansion speed of coronal mass ejections. Sol. Phys., 260, 401–406, 2009. [CrossRef] [Google Scholar]
  • Mierla, M., B. Inhester, C. Marqué, L. Rodriguez, S. Gissot, A.N. Zhukov, D. Berghmans, and J. Davila. On 3D reconstruction of coronal mass ejections: I. method description and application to SECCHI-COR data. Sol. Phys., 259, 123–141, 2009. [NASA ADS] [CrossRef] [Google Scholar]
  • Mishra, W., and N. Srivastava. Estimating the arrival time of earth-directed coronal mass ejections at in situ spacecraft using COR and HI observations from STEREO. Astrophys. J., 772, 70, 2013. [CrossRef] [Google Scholar]
  • Mishra, W., and N. Srivastava. Morphological and kinematic evolution of three interacting coronal mass ejections of 2011 February 13–15. Astrophys. J., 794, 64, 2014. [CrossRef] [Google Scholar]
  • Mishra, W., N. Srivastava, and J.A. Davies. A comparison of reconstruction methods for the estimation of coronal mass ejections kinematics based on SECCHI/HI observations. Astrophys. J., 784, 135, 2014. [NASA ADS] [CrossRef] [Google Scholar]
  • Mishra, W., N. Srivastava, and D. Chakrabarty. Evolution and consequences of interacting CMEs of 9–10 November 2012 using STEREO/SECCHI and in situ observations. Sol. Phys., 290, 527–552, 2015. [Google Scholar]
  • Möstl, C., and J.A. Davies. Speeds and arrival times of solar transients approximated by self-similar expanding circular fronts. Sol. Phys., 285, 411–423, 2013. [NASA ADS] [CrossRef] [Google Scholar]
  • Möstl, C., T. Rollett, N. Lugaz, C.J. Farrugia, J.A. Davies, et al. Arrival time calculation for interplanetary coronal mass ejections with circular fronts and application to STEREO observations of the 2009 February 13 eruption. Astrophys. J., 741, 34, 2011. [Google Scholar]
  • Ogilvie, K.W., D.J. Chornay, R.J. Fritzenreiter, F. Hunsaker, J. Keller, et al. SWE, a comprehensive plasma instrument for the Wind spacecraft. Space Sci. Rev., 71, 55–77, 1995. [NASA ADS] [CrossRef] [Google Scholar]
  • Poomvises, W., J. Zhang, and O. Olmedo. Coronal mass ejection propagation and expansion in three-dimensional space in the heliosphere based on Stereo/SECCHI observations. Astrophys. J. Lett., 717, L159–L163, 2010. [Google Scholar]
  • Riley, P., R. Lionello, Z. Mikić, and J. Linker. Using global simulations to relate the three-part structure of coronal mass ejections to in situ signatures. Astrophys. J., 672, 1221–1227, 2008. [Google Scholar]
  • Rouillard, A.P., J.A. Davies, R.J. Forsyth, A. Rees, C.J. Davis, et al. First imaging of corotating interaction regions using the STEREO spacecraft. Geophys. Res. Lett., 35, L1011, 2008. [Google Scholar]
  • Schwenn, R., A. dal Lago, E. Huttunen, and W.D. Gonzalez. The association of coronal mass ejections with their effects near the Earth. Ann. Geophys., 23, 1033–1059, 2005. [NASA ADS] [CrossRef] [Google Scholar]
  • Sharma, R., and N. Srivastava. Presence of solar filament plasma detected in interplanetary coronal mass ejections by in situ spacecraft. J. Space Weather Space Clim., 2 (26), A10, 2012. [CrossRef] [EDP Sciences] [Google Scholar]
  • Sharma, R., N. Srivastava, D. Chakrabarty, C. Möstl, and Q. Hu. Interplanetary and geomagnetic consequences of 5 January 2005 CMEs associated with eruptive filaments. J. Geophys. Res., 118, 3954–3967, 2013. [Google Scholar]
  • Sheeley, N.R., J.H. Walters, Y.-M. Wang, and R.A. Howard. Continuous tracking of coronal outflows: two kinds of coronal mass ejections. J. Geophys. Res., 104, 24739–24768, 1999. [Google Scholar]
  • Sheeley Jr., N.R., A.D. Herbst, C.A. Palatchi, Y.-M. Wang, R.A. Howard, et al. Heliospheric images of the solar wind at Earth. Astrophys. J., 675, 853–862, 2008. [Google Scholar]
  • Skoug, R.M., S.J. Bame, W.C. Feldman, J.T. Gosling, D.J. McComas, et al. A prolonged He+ enhancement within a coronal mass ejection in the solar wind. Geophys. Res. Lett., 26, 161–164, 1999. [NASA ADS] [CrossRef] [Google Scholar]
  • Stone, E.C., A.M. Frandsen, R.A. Mewaldt, E.R. Christian, D. Margolies, J.F. Ormes, and F. Snow. The advanced composition explorer. Space Sci. Rev., 86, 1–22, 1998. [Google Scholar]
  • Tappin, S.J., A. Buffington, M.P. Cooke, C.J. Eyles, P.P. Hick, et al. Tracking a major interplanetary disturbance with SMEI. Geophys. Res. Lett., 31, L02802, 2004. [CrossRef] [Google Scholar]
  • Thompson, W.T. 3D triangulation of a Sun-grazing comet. Icarus, 200, 351–357, 2009. [NASA ADS] [CrossRef] [Google Scholar]
  • Vršnak, B., T. Žic, T.V. Falkenberg, C. Möstl, S. Vennerstrom, and D. Vrbanec. The role of aerodynamic drag in propagation of interplanetary coronal mass ejections. A&A, 512, A43, 2010. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Vršnak, B., T. Žic, D. Vrbanec, M. Temmer, T. Rollett, et al. Propagation of interplanetary coronal mass ejections: the drag-based model. Sol. Phys., 285, 295–315, 2013. [Google Scholar]
  • Webb, D.F., and A.J. Hundhausen. Activity associated with the solar origin of coronal mass ejections. Sol. Phys., 108, 383–401, 1987. [NASA ADS] [CrossRef] [Google Scholar]
  • Zurbuchen, T.H., and I.G. Richardson. In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci. Rev., 123, 31–43, 2006. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.