J. Space Weather Space Clim.
Volume 5, 2015
Statistical Challenges in Solar Information Processing
Article Number A19
Number of page(s) 14
Published online 03 July 2015
  • Brueckner, G.E., R.A. Howard, M.J. Koomen, C.M. Korendyke, D.J. Michels, et al. The Large Angle Spectroscopic Coronagraph (LASCO). Sol. Phys., 162, 357–402, 1995, DOI: 10.1007/BF00733434. [NASA ADS] [CrossRef] [Google Scholar]
  • Byrne, J.P., P.T. Gallagher, R.T.J. McAteer, and C.A. Young. The kinematics of coronal mass ejections using multiscale methods. Astron. Astrophys., 495, 325–334, 2009, DOI: 10.1051/0004-6361:200809811. [Google Scholar]
  • Byrne, J.P., D.M. Long, P.T. Gallagher, D.S. Bloomfield, S.A. Maloney, R.T.J. McAteer, H. Morgan, and S.R. Habbal. Improved methods for determining the kinematics of coronal mass ejections and coronal waves. Astron. Astrophys., 557, A96, 2013, DOI: 10.1051/0004-6361/201321223. [Google Scholar]
  • Byrne, J.P., S.A. Maloney, R.T.J. McAteer, J.M. Refojo, and P.T. Gallagher. Propagation of an Earth-directed coronal mass ejection in three dimensions. Nature Communications, 1, 74, 2010, DOI: 10.1038/ncomms1077. [Google Scholar]
  • Byrne, J.P., H. Morgan, S.R. Habbal, and P.T. Gallagher. Automatic detection and tracking of coronal mass ejections. II. Multiscale filtering of coronagraph images. Astrophys. J., 752, 145, 2012, DOI: 10.1088/0004-637X/752/2/145. [Google Scholar]
  • Carley, E.P., D.M. Long, J.P. Byrne, P. Zucca, D.S. Bloomfield, J. McCauley, and P.T. Gallagher. Quasiperiodic acceleration of electrons by a plasmoid-driven shock in the solar atmosphere. Nat. Phys., 9, 811–816, 2013, DOI: 10.1038/nphys2767. [Google Scholar]
  • Chen, P.F. Coronal mass ejections: models and their observational basis. Living Rev. Sol. Phys., 8, 1, 2011. [Google Scholar]
  • Colaninno, R.C., and A. Vourlidas. Analysis of the velocity field of CMEs using optical flow methods. Astrophys. J., 652, 1747–1754, 2006, DOI: 10.1086/507943. [NASA ADS] [CrossRef] [Google Scholar]
  • Davis, C.J., J.A. Davies, M. Lockwood, A.P. Rouillard, C.J. Eyles, and R.A. Harrison. Stereoscopic imaging of an Earth-impacting solar coronal mass ejection: a major milestone for the STEREO mission. Geophys. Res. Lett., 36, 8102, 2009, DOI: 10.1029/2009GL038021. [CrossRef] [Google Scholar]
  • Domingo, V., B. Fleck, and A.I. Poland. The SOHO mission: an overview. Sol. Phys., 162, 1–2, 1995, DOI: 10.1007/BF00733425. [NASA ADS] [CrossRef] [Google Scholar]
  • Gallagher, P.T., C.A. Young, J.P. Byrne, and R.T.J. McAteer. Coronal mass ejection detection using wavelets, curvelets and ridgelets: applications for space weather monitoring. Adv. Space Res., 47, 2118–2126, 2011, DOI: 10.1016/j.asr.2010.03.028. [NASA ADS] [CrossRef] [Google Scholar]
  • Gopalswamy, N., S. Yashiro, G. Michalek, G. Stenborg, A. Vourlidas, S. Freeland, and R. Howard. The SOHO/LASCO CME catalog. Earth Moon and Planets, 104, 295–313, 2009, DOI: 10.1007/s11038-008-9282-7. [Google Scholar]
  • Goussies, N.A., M.E. Mejail, J. Jacobo, and G. Stenborg. Detection and tracking of coronal mass ejections based on supervised segmentation and level set. Pattern Recognit. Lett., 31 (6), 496–501, 2010. [CrossRef] [Google Scholar]
  • Hough, P.V.C. A method and means for recognizing complex patterns. US Patent: 3,069,654, 1962. [Google Scholar]
  • Howard, R.A., J.D. Moses, A. Vourlidas, J.S. Newmark, D.G. Socker, et al. Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev., 136, 67–115, 2008, DOI: 10.1007/s11214-008-9341-4. [NASA ADS] [CrossRef] [Google Scholar]
  • Howard, T.A., and S.J. Tappin. Statistical survey of earthbound interplanetary shocks, associated coronal mass ejections and their space weather consequences. Astron. Astrophys., 440, 373–383, 2005, DOI: 10.1051/0004-6361:20053109. [Google Scholar]
  • Hundhausen, A.J. Sizes and locations of coronal mass ejections – SMM observations from 1980 and 1984–1989. J. Geophys. Res., 98, 13177, 1993, DOI: 10.1029/93JA00157. [NASA ADS] [CrossRef] [Google Scholar]
  • Illing, R.M.E., and A.J. Hundhausen. Observation of a coronal transient from 1.2 to 6 solar radii. J. Geophys. Res., 90, 275–282, 1985, DOI: 10.1029/JA090iA01p00275. [Google Scholar]
  • Kilpua, E.K.J., J. Pomoell, A. Vourlidas, R. Vainio, J. Luhmann, Y. Li, P. Schroeder, A.B. Galvin, and K. Simunac. STEREO observations of interplanetary coronal mass ejections and prominence deflection during solar minimum period. Ann. Geophys., 27 (12), 4491–4503, 2009. [Google Scholar]
  • Koomen, M.J., C.R. Detwiler, G.E. Brueckner, H.W. Cooper, and R. Tousey. White light coronagraph in OSO-7. Appl. Opt., 14, 743–751, 1975. [CrossRef] [Google Scholar]
  • Liu, Y.D., J.G. Luhmann, P. Kajdič, E.K.J. Kilpua, N. Lugaz, et al. Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections. Nature Communications, 5, 3481, 2014, DOI: 10.1038/ncomms4481. [Google Scholar]
  • Lugaz, N., and P. Kintner. Effect of solar wind drag on the determination of the properties of coronal mass ejections from Heliospheric images. Sol. Phys., 285, 281–294, 2013, DOI: 10.1007/s11207-012-9948-1. [CrossRef] [Google Scholar]
  • MacQueen, R.M., A. Csoeke-Poeckh, E. Hildner, L. House, R. Reynolds, A. Stanger, H. Tepoel, and W. Wagner. The high altitude observatory coronagraph/polarimeter on the solar maximum mission. Sol. Phys., 65, 91–107, 1980, DOI: 10.1007/BF00151386. [NASA ADS] [CrossRef] [Google Scholar]
  • Morgan, H., J.P. Byrne, and S.R. Habbal. Automatically detecting and tracking coronal mass ejections. I. Separation of dynamic and quiescent components in coronagraph images. Astrophys. J., 752, 144, 2012, DOI: 10.1088/0004-637X/752/2/144. [Google Scholar]
  • Olmedo, O., J. Zhang, H. Wechsler, A. Poland, and K. Borne. Automatic detection and tracking of coronal mass ejections in coronagraph time series. Sol. Phys., 248, 485–499, 2008, DOI: 10.1007/s11207-007-9104-5. [NASA ADS] [CrossRef] [Google Scholar]
  • Plunkett, S.P., B.J. Thompson, O.C. St. Cyr, and R.A. Howard. Solar source regions of coronal mass ejections and their geomagnetic effects. J. Atmos. Sol. Terr. Phys., 63, 389–402, 2001, DOI: 10.1016/S1364-6826(00)00166-8. [CrossRef] [Google Scholar]
  • Pulkkinen, T. Space weather: terrestrial perspective. Living Rev. Sol. Phys., 4, 1, 2007. [Google Scholar]
  • Robbrecht, E., and D. Berghmans. Automated recognition of coronal mass ejections (CMEs) in near-real time data. Astron. Astrophys., 425, 1097–1106, 2004, DOI: 10.1051/0004-6361:20041302. [CrossRef] [EDP Sciences] [Google Scholar]
  • Savitzky, A., and M. Golay. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem., 36, 1627–1639, 1964. [NASA ADS] [CrossRef] [Google Scholar]
  • Schwenn, R., A. dal Lago, E. Huttunen, and W.D. Gonzalez. The association of coronal mass ejections with their effects near the Earth. Ann. Geophys., 23, 1033–1059, 2005. [NASA ADS] [CrossRef] [Google Scholar]
  • Sheeley Jr., N.R., D.J. Michels, R.A. Howard, and M.J. Koomen. Initial observations with the SOLWIND coronagraph. Astrophys. J. Lett., 237, L99–L101, 1980, DOI: 10.1086/183243. [Google Scholar]
  • St. Cyr, O.C., S.P. Plunkett, D.J. Michels, S.E. Paswaters, M.J. Koomen, et al. Properties of coronal mass ejections: SOHO LASCO observations from January 1996 to June 1998. J. Geophys. Res., 105, 18169–18186, 2000, DOI: 10.1029/1999JA000381. [NASA ADS] [CrossRef] [Google Scholar]
  • Stenborg, G., and P.J. Cobelli. A wavelet packets equalization technique to reveal the multiple spatial scale nature of coronal structures. Astron. Astrophys., 398, 1185–1193, 2003, DOI: 10.1051/0004-6361:20021687. [Google Scholar]
  • Webb, D.F., and T.A. Howard. Coronal mass ejections: observations. Living Rev. Sol. Phys., 9, 3, 2012. [Google Scholar]
  • Yashiro, S., N. Gopalswamy, G. Michalek, O.C. St. Cyr, S.P. Plunkett, N.B. Rich, and R.A. Howard. A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res. [Space Phys.], 109, 7105, 2004, DOI: 10.1029/2003JA010282. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.