Issue
J. Space Weather Space Clim.
Volume 5, 2015
Statistical Challenges in Solar Information Processing
Article Number A18
Number of page(s) 16
DOI https://doi.org/10.1051/swsc/2015019
Published online 30 June 2015
  • Alipour, N., H. Safari, and D.E. Innes. An automatic detection method for extreme-ultraviolet dimmings associated with small-scale eruption. Astrophys. J., 746 (1), 12, 2012, DOI: 10.1088/0004-637X/746/1/12. [Google Scholar]
  • Aranda, M.C., and C. Caballero. Automatic detection of active region on EUV solar images using Fuzzy clustering. In: Computational Intelligence for Knowledge-Based Systems Design, 13th International Conference on Information Processing and Management of Uncertainty, IPMU 2010, Dortmund, Germany, June 28 – July 2, 2010, 69–78, 2010, DOI: 10.1007/978-3-642-14049-5_8. [Google Scholar]
  • Attrill, G.D.R., and M.J. Wills-Davey. Automatic detection and extraction of coronal dimmings from SDO/AIA data. Sol. Phys., 262, 461–480, 2010, DOI: 10.1007/s11207-009-9444-4. [NASA ADS] [CrossRef] [Google Scholar]
  • Bewsher, D., R.A. Harrison, and D.S. Brown. The relationship between EUV dimming and coronal mass ejections. I. Statistical study and probability model. Astron. Astrophys., 478, 897–906, 2008, DOI: 10.1051/0004-6361:20078615. [Google Scholar]
  • Bonte, K., D. Berghmans, A. De Groof, K. Steed, and S. Poedts. SoFAST: automated flare detection with the PROBA2/SWAP EUV imager. Sol. Phys., 286, 185–199, 2013, DOI: 10.1007/s11207-012-0165-8. [CrossRef] [Google Scholar]
  • Caballero, C., and M. Aranda. Automatic tracking of active regions and detection of solar flares in solar EUV images. Sol. Phys., 289 (5), 1643–1661, 2014, DOI: 10.1007/s11207-013-0415-4. [CrossRef] [Google Scholar]
  • Chen, P.F., and K. Shibata. A further consideration of the mechanism for EIT waves. In: S. Ikeuchi, J. Hearnshaw, and T. Hanawa, Editors, 8th Asian-Pacific Regional Meeting, Astronomical Society of Japan, Tokyo, Vol. II, 421–422, 2002. [Google Scholar]
  • Chertok, I., and V. Grechnev. Large-scale dimmings produced by solar coronal mass ejections according to SOHO/EIT data in four EUV lines. Astron. Rep., 47 (11), 934–945, 2003, DOI: 10.1134/1.1626196. [CrossRef] [Google Scholar]
  • Crosby, N.B., A. Veronig, E. Robbrecht, B. Vrsnak, S. Vennerstrom, et al. Forecasting the space weather impact: The COMESEP project. Am. Inst. Phys. Conf. Proc., 1500 (1), 159–164, 2012, DOI: 10.1063/1.4768760. [Google Scholar]
  • Delaboudinière, J., G.E. Artzner, J. Brunaud, A.H. Gabriel, J.F. Hochedez, et al. EIT: extreme-ultraviolet imaging telescope for the SOHO mission. Sol. Phys., 162, 291–312, 1995, DOI: 10.1007/BF00733432. [NASA ADS] [CrossRef] [Google Scholar]
  • Delannée, C. Another view of the EIT wave phenomenon. Astrophys. J., 545, 512–523, 2000, DOI: 10.1086/317777. [Google Scholar]
  • Delannée, C., T. Török, G. Aulanier, and J.-F. Hochedez. A new model for propagating parts of EIT waves: a current shell in a CME. Sol. Phys., 247, 123–150, 2008, DOI: 10.1007/s11207-007-9085-4. [NASA ADS] [CrossRef] [Google Scholar]
  • Dere, K.P., G.E. Brueckner, R.A. Howard, M.J. Koomen, C.M. Korendyke, et al. EIT and LASCO observations of the initiation of a coronal mass ejection. Sol. Phys., 175 (2), 601–612, 1997, DOI: 10.1023/A:A1004907307376. [NASA ADS] [CrossRef] [Google Scholar]
  • Fernandez Borda, R.A., P.D. Mininni, C.H. Mandrini, D.O. Gómez, O.H. Bauer, and M.G. Rovira. Automatic solar flare detection using neural network techniques. Sol. Phys., 206, 347–357, 2002, DOI: 10.1023/A:1015043621346. [Google Scholar]
  • Gallagher, P.T., and D.M. Long. Large-scale bright fronts in the solar corona: a review of “EIT waves”. Space Sci. Rev., 158, 365–396, 2011, DOI: 10.1007/s11214-010-9710-7. [NASA ADS] [CrossRef] [Google Scholar]
  • Golub, L., E. Deluca, G. Austin, J. Bookbinder, D. Caldwell, et al. The X-ray telescope (XRT) for the Hinode mission. Sol. Phys., 243, 63–86, 2007, DOI: 10.1007/s11207-007-0182-1. [NASA ADS] [CrossRef] [Google Scholar]
  • Grigis, P., A. Davey, P. Martens, P. Testa, R. Timmons, Y. Su, and SDO Feature Finding Team. The SDO flare detective. Bull. Amer. Astron. Soc., 41, 874, 2010. [Google Scholar]
  • Harrison, R.A., and M. Lyons. A spectroscopic study of coronal dimming associated with a coronal mass ejection. Astron. Astrophys., 358, 1097–1108, 2000. [Google Scholar]
  • Hudson, H.S., L.W. Acton, and S.L. Freeland. A long-duration solar flare with mass ejection and global consequences. Astrophys. J., 470, 629, 1996, DOI: 10.1086/177894. [Google Scholar]
  • Kano, R., T. Sakao, H. Hara, S. Tsuneta, K. Matsuzaki, et al. The Hinode X-ray telescope (XRT): camera design, performance and operations. Sol. Phys., 249, 263–279, 2008, DOI: 10.1007/S11207-007-9058-7. [NASA ADS] [CrossRef] [Google Scholar]
  • Krista, L.D., and A. Reinard. Study of the recurring dimming region detected at AR 11305 using the Coronal Dimming Tracker (CoDiT). Astrophys. J., 762, 91, 2013, DOI: 10.1088/0004-637X/762/2/91. [CrossRef] [Google Scholar]
  • Lemen, J.R., A.M. Title, D.J. Akin, P.F. Boerner, C. Chou, et al. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Sol. Phys., 275, 17–40, 2012, DOI: 10.1007/S11207-011-9776-8. [NASA ADS] [CrossRef] [Google Scholar]
  • Long, D.M., D.S. Bloomfield, P.T. Gallagher, and D. Pérez-Suárez. CorPITA: an automated algorithm for the identification and analysis of coronal “EIT waves”. Sol. Phys., 289, 3279–3295, 2014, DOI: 10.1007/s11207-014-0527-5. [CrossRef] [Google Scholar]
  • Long, D.M., E.E. DeLuca, and P.T. Gallagher. The wave properties of coronal bright fronts observed using SDO/AIA. Astrophys. J. Lett., 741, L21, 2011, DOI: 10.1088/2041-8205/741/1/L21. [NASA ADS] [CrossRef] [Google Scholar]
  • Maunder, E.W. Note on the distribution of sun-spots in heliographic latitude, 1874–1902. Mon. Not. R. Astron. Soc., 64, 747–761, 1904. [Google Scholar]
  • Nitta, N.V., C.J. Schrijver, A.M. Title, and W. Liu. Large-scale coronal propagating fronts in solar eruptions as observed by the atmospheric imaging assembly on board the solar dynamics observatory – an ensemble study. Astrophys. J., 776, 58, 2013, DOI: 10.1088/0004-637X/776/1/58. [Google Scholar]
  • Olmedo, O., A. Vourlidas, J. Zhang, and X. Cheng. Secondary waves and/or the “reflection” from and “transmission” through a coronal hole of an extreme ultraviolet wave associated with the 2011 February 15 X2.2 flare observed with SDO/AIA and STEREO/EUVI. Astrophys. J., 756 (2), 143, 2012, DOI: 10.1088/0004-637X/756/2/143. [Google Scholar]
  • Patsourakos, S., and A. Vourlidas. ‘‘Extreme ultraviolet waves” are waves: first quadrature observations of an extreme ultraviolet wave from STEREO. Astrophys. J. Lett., 700, L182–L186, 2009, DOI: 10.1088/0004-637X/700/2/L182. [Google Scholar]
  • Patsourakos, S., A. Vourlidas, Y.M. Wang, G. Stenborg, and A. Thernisien. What is the nature of EUV waves? First STEREO 3D observations and comparison with theoretical models. Sol. Phys., 259, 4971, 2009, DOI: 10.1007/s11207-009-9386-x. [NASA ADS] [CrossRef] [Google Scholar]
  • Pesnell, W.D., B.J. Thompson, and P.C. Chamberlin. The Solar Dynamics Observatory (SDO). Sol. Phys., 275, 3–15, 2012, DOI: 10.1007/s11207-011-9841-3. [NASA ADS] [CrossRef] [Google Scholar]
  • Podladchikova, O., and D. Berghmans. Automated detection of EIT waves and dimmings. Sol. Phys., 228, 265–284, 2005, DOI: 10.1007/s11207-005-5373-z. [NASA ADS] [CrossRef] [Google Scholar]
  • Podladchikova, O., A. Vourlidas, R.A.M. Van der Linden, J.-P. Wülser, and S. Patsourakos. Extreme ultraviolet observations and analysis of micro-eruptions and their associated coronal waves. Astrophys. J., 709, 369–376, 2010, DOI: 10.1088/0004-637X/709/1/369. [Google Scholar]
  • Qu, M., F.Y. Shih, J. Jing, and H. Wang. Automatic solar flare detection using MLP, RBF, and SVM. Sol. Phys., 217, 157–172, 2003, DOI: 10.1023/A:1027388729489. [NASA ADS] [CrossRef] [Google Scholar]
  • Reinard, A.A., and D.A. Biesecker. Coronal mass ejection-associated coronal dimmings. Astrophys. J., 674, 576–585, 2008, DOI: 10.1086/525269. [Google Scholar]
  • Robbrecht, E., and D. Berghmans. Automated recognition of coronal mass ejections (CMEs) in near-realtime data. Astron. Astrophys., 425, 1097–1106, 2004, DOI: 10.1051/0004-6361:20041302. [Google Scholar]
  • Ryan, D.F., R.O. Milligan, P.T. Gallagher, B.R. Dennis, A.K. Tolbert, R.A. Schwartz, and C.A. Young. The thermal properties of solar flares over three solar cycles using GOES X-ray observations. Astrophys. J. Suppl. Ser., 202, 11, 2012, DOI: 10.1088/0067-0049/202/2/11. [Google Scholar]
  • Shen, Y., Y. Liu, J. Su, H. Li, R. Zhao, Z. Tian, K. Ichimoto, and K. Shibata. Diffraction, refraction, and reflection of an extreme-ultraviolet wave observed during its interactions with remote active regions. Astrophys. J. Lett., 773, L33, 2013, DOI: 10.1088/2041-8205/773/2/L33. [Google Scholar]
  • Snodgrass, H.B., and R.K. Ulrich. Rotation of Doppler features in the solar photosphere. Astrophys. J., 351, 309–316, 1990, DOI: 10.1086/168467. [Google Scholar]
  • Sterling, A.C., and H.S. Hudson. Yohkoh SXT observations of X-ray “dimming” associated with a halo coronal mass ejection. Astrophys. J. Lett., 491 (1), L55, 1997, DOI: 10.1086/311043. [Google Scholar]
  • Thompson, B.J., E.W. Cliver, N. Nitta, C. Delannée, and J.-P. Delaboudinière. Coronal dimmings, energetic CMEs in April-May 1988. Geophys. Res. Lett., 27, 1431–1434, 2000, DOI: 10.1029/1999GL003668. [Google Scholar]
  • Thompson, B.J., J.B. Gurman, W.M. Neupert, J.S. Newmark, J.-P. Delaboudinire, et al. SOHO/EIT observations of the 1997 April 7 coronal transient: possible evidence of coronal Moreton waves. Astrophys. J. Lett., 517 (2), L151, 1999. DOI: 10.1029/98GL50429. [Google Scholar]
  • Thompson, B.J., and D.C. Myers. A Catalog of Coronal “EIT Wave” Transients. Astrophys. J. Supp., 183, 225–243, 2009, DOI: 10.1088/0067-0049/183/2/225. [Google Scholar]
  • Thompson, B.J., S.P. Plunkett, J.B. Gurman, J.S. Newmark, O.C. St. Cyr, and D.J. Michels. SOHO/EIT observations of an Earth-directed coronal mass ejection on May 12, 1997. Geophys. Res. Lett., 25 (14), 2465–2468, 1998, DOI: 10.1029/98GL50429. [Google Scholar]
  • Tian, H., S.W. McIntosh, L. Xia, J. He, and X. Wang. What can we learn about solar coronal mass ejections, coronal dimmings, and extreme-ultraviolet jets through spectroscopic observations? Astrophys. J., 748, 106, 2012, DOI: 10.1088/0004-637X/748/2/106. [Google Scholar]
  • Tsuneta, S., L. Acton, M. Bruner, J. Lemen, W. Brown, et al. The soft X-ray telescope for the SOLAR-A mission. Sol. Phys., 136, 37–67, 1991, DOI: 10.1007/BF00151694. [NASA ADS] [CrossRef] [Google Scholar]
  • Uchida, Y. Propagation of hydromagnetic disturbances in the solar corona and Moreton’s wave phenomenon. Sol. Phys., 4, 30–44, 1968, DOI: 10.1007/BF00146996. [NASA ADS] [CrossRef] [Google Scholar]
  • Uchida, Y. Diagnosis of coronal magnetic structure by flare-associated hydromagnetic disturbances. Publ. Astron. Soc. Jap., 22, 341, 1970. [Google Scholar]
  • Webb, D.F., R.P. Lepping, L.F. Burlaga, C.E. DeForest, D.E. Larson, S.F. Martin, S.P. Plunkett, and D.M. Rust. The origin and development of the May 1997 magnetic cloud. J. Geophys. Res., 105, 27251–27260, 2000, DOI: 10.1029/2000JA000021. [Google Scholar]
  • Wills-Davey, M.J. Tracking large-scale propagating coronal wave fronts (EIT waves) using automated methods. Astrophys. J., 645, 757–765, 2006, DOI: 10.1086/504144. [Google Scholar]
  • Wills-Davey, M.J., and G.D.R. Attrill. EIT waves: a changing understanding over a solar cycle. Space Sci. Rev., 149, 325–353, 2009, DOI: 10.1007/s11214-009-9612-8. [NASA ADS] [CrossRef] [Google Scholar]
  • Wills-Davey, M.J., C.E. DeForest, and J.O. Stenflo. Are “EIT waves” fast-mode MHD waves? Astrophys. J., 664, 556–562, 2007, DOI: 10.1086/519013. [NASA ADS] [CrossRef] [Google Scholar]
  • Wuelser, J.-P., J.R. Lemen, T.D. Tarbell, C.J. Wolfson, J.C. Cannon, et al. EUVI: the STEREO-SECCHI extreme ultraviolet imager. In: S., Fineschi, and M.A. Gummin, Editors, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 5171 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 111–122, 2004, DOI: 10.1117/12.506877. [Google Scholar]
  • Zhukov, A.N. EIT wave observations and modeling in the STEREO era. J. Atmos. Sol. Terr. Phys., 73, 1096–1116, 2011, DOI: 10.1016/j.jastp.2010.11.030. [Google Scholar]
  • Zhukov, A.N., and F. Auchère. On the nature of EIT waves, EUV dimmings and their link to CMEs. Astron. Astrophys., 427, 705–716, 2004, DOI: 10.1051/0004-6361:20040351. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.