Statistical Challenges in Solar Information Processing
Open Access
Issue
J. Space Weather Space Clim.
Volume 5, 2015
Statistical Challenges in Solar Information Processing
Article Number A18
Number of page(s) 16
DOI https://doi.org/10.1051/swsc/2015019
Published online 30 June 2015
  • Alipour, N., H. Safari, and D.E. Innes. An automatic detection method for extreme-ultraviolet dimmings associated with small-scale eruption. Astrophys. J., 746 (1), 12, 2012, DOI: 10.1088/0004-637X/746/1/12. [CrossRef]
  • Aranda, M.C., and C. Caballero. Automatic detection of active region on EUV solar images using Fuzzy clustering. In: Computational Intelligence for Knowledge-Based Systems Design, 13th International Conference on Information Processing and Management of Uncertainty, IPMU 2010, Dortmund, Germany, June 28 – July 2, 2010, 69–78, 2010, DOI: 10.1007/978-3-642-14049-5_8.
  • Attrill, G.D.R., and M.J. Wills-Davey. Automatic detection and extraction of coronal dimmings from SDO/AIA data. Sol. Phys., 262, 461–480, 2010, DOI: 10.1007/s11207-009-9444-4. [NASA ADS] [CrossRef]
  • Bewsher, D., R.A. Harrison, and D.S. Brown. The relationship between EUV dimming and coronal mass ejections. I. Statistical study and probability model. Astron. Astrophys., 478, 897–906, 2008, DOI: 10.1051/0004-6361:20078615. [NASA ADS] [CrossRef] [EDP Sciences]
  • Bonte, K., D. Berghmans, A. De Groof, K. Steed, and S. Poedts. SoFAST: automated flare detection with the PROBA2/SWAP EUV imager. Sol. Phys., 286, 185–199, 2013, DOI: 10.1007/s11207-012-0165-8. [CrossRef]
  • Caballero, C., and M. Aranda. Automatic tracking of active regions and detection of solar flares in solar EUV images. Sol. Phys., 289 (5), 1643–1661, 2014, DOI: 10.1007/s11207-013-0415-4. [CrossRef]
  • Chen, P.F., and K. Shibata. A further consideration of the mechanism for EIT waves. In: S. Ikeuchi, J. Hearnshaw, and T. Hanawa, Editors, 8th Asian-Pacific Regional Meeting, Astronomical Society of Japan, Tokyo, Vol. II, 421–422, 2002.
  • Chertok, I., and V. Grechnev. Large-scale dimmings produced by solar coronal mass ejections according to SOHO/EIT data in four EUV lines. Astron. Rep., 47 (11), 934–945, 2003, DOI: 10.1134/1.1626196. [CrossRef]
  • Crosby, N.B., A. Veronig, E. Robbrecht, B. Vrsnak, S. Vennerstrom, et al. Forecasting the space weather impact: The COMESEP project. Am. Inst. Phys. Conf. Proc., 1500 (1), 159–164, 2012, DOI: 10.1063/1.4768760.
  • Delaboudinière, J., G.E. Artzner, J. Brunaud, A.H. Gabriel, J.F. Hochedez, et al. EIT: extreme-ultraviolet imaging telescope for the SOHO mission. Sol. Phys., 162, 291–312, 1995, DOI: 10.1007/BF00733432. [NASA ADS] [CrossRef]
  • Delannée, C. Another view of the EIT wave phenomenon. Astrophys. J., 545, 512–523, 2000, DOI: 10.1086/317777. [NASA ADS] [CrossRef]
  • Delannée, C., T. Török, G. Aulanier, and J.-F. Hochedez. A new model for propagating parts of EIT waves: a current shell in a CME. Sol. Phys., 247, 123–150, 2008, DOI: 10.1007/s11207-007-9085-4. [NASA ADS] [CrossRef]
  • Dere, K.P., G.E. Brueckner, R.A. Howard, M.J. Koomen, C.M. Korendyke, et al. EIT and LASCO observations of the initiation of a coronal mass ejection. Sol. Phys., 175 (2), 601–612, 1997, DOI: 10.1023/A:A1004907307376. [NASA ADS] [CrossRef]
  • Fernandez Borda, R.A., P.D. Mininni, C.H. Mandrini, D.O. Gómez, O.H. Bauer, and M.G. Rovira. Automatic solar flare detection using neural network techniques. Sol. Phys., 206, 347–357, 2002, DOI: 10.1023/A:1015043621346. [NASA ADS] [CrossRef]
  • Gallagher, P.T., and D.M. Long. Large-scale bright fronts in the solar corona: a review of “EIT waves”. Space Sci. Rev., 158, 365–396, 2011, DOI: 10.1007/s11214-010-9710-7. [NASA ADS] [CrossRef]
  • Golub, L., E. Deluca, G. Austin, J. Bookbinder, D. Caldwell, et al. The X-ray telescope (XRT) for the Hinode mission. Sol. Phys., 243, 63–86, 2007, DOI: 10.1007/s11207-007-0182-1. [NASA ADS] [CrossRef]
  • Grigis, P., A. Davey, P. Martens, P. Testa, R. Timmons, Y. Su, and SDO Feature Finding Team. The SDO flare detective. Bull. Amer. Astron. Soc., 41, 874, 2010.
  • Harrison, R.A., and M. Lyons. A spectroscopic study of coronal dimming associated with a coronal mass ejection. Astron. Astrophys., 358, 1097–1108, 2000.
  • Hudson, H.S., L.W. Acton, and S.L. Freeland. A long-duration solar flare with mass ejection and global consequences. Astrophys. J., 470, 629, 1996, DOI: 10.1086/177894. [NASA ADS] [CrossRef]
  • Kano, R., T. Sakao, H. Hara, S. Tsuneta, K. Matsuzaki, et al. The Hinode X-ray telescope (XRT): camera design, performance and operations. Sol. Phys., 249, 263–279, 2008, DOI: 10.1007/S11207-007-9058-7. [NASA ADS] [CrossRef]
  • Krista, L.D., and A. Reinard. Study of the recurring dimming region detected at AR 11305 using the Coronal Dimming Tracker (CoDiT). Astrophys. J., 762, 91, 2013, DOI: 10.1088/0004-637X/762/2/91. [CrossRef]
  • Lemen, J.R., A.M. Title, D.J. Akin, P.F. Boerner, C. Chou, et al. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Sol. Phys., 275, 17–40, 2012, DOI: 10.1007/S11207-011-9776-8. [NASA ADS] [CrossRef]
  • Long, D.M., D.S. Bloomfield, P.T. Gallagher, and D. Pérez-Suárez. CorPITA: an automated algorithm for the identification and analysis of coronal “EIT waves”. Sol. Phys., 289, 3279–3295, 2014, DOI: 10.1007/s11207-014-0527-5. [CrossRef]
  • Long, D.M., E.E. DeLuca, and P.T. Gallagher. The wave properties of coronal bright fronts observed using SDO/AIA. Astrophys. J. Lett., 741, L21, 2011, DOI: 10.1088/2041-8205/741/1/L21. [NASA ADS] [CrossRef]
  • Maunder, E.W. Note on the distribution of sun-spots in heliographic latitude, 1874–1902. Mon. Not. R. Astron. Soc., 64, 747–761, 1904. [CrossRef]
  • Nitta, N.V., C.J. Schrijver, A.M. Title, and W. Liu. Large-scale coronal propagating fronts in solar eruptions as observed by the atmospheric imaging assembly on board the solar dynamics observatory – an ensemble study. Astrophys. J., 776, 58, 2013, DOI: 10.1088/0004-637X/776/1/58. [NASA ADS] [CrossRef]
  • Olmedo, O., A. Vourlidas, J. Zhang, and X. Cheng. Secondary waves and/or the “reflection” from and “transmission” through a coronal hole of an extreme ultraviolet wave associated with the 2011 February 15 X2.2 flare observed with SDO/AIA and STEREO/EUVI. Astrophys. J., 756 (2), 143, 2012, DOI: 10.1088/0004-637X/756/2/143. [NASA ADS] [CrossRef]
  • Patsourakos, S., and A. Vourlidas. ‘‘Extreme ultraviolet waves” are waves: first quadrature observations of an extreme ultraviolet wave from STEREO. Astrophys. J. Lett., 700, L182–L186, 2009, DOI: 10.1088/0004-637X/700/2/L182. [NASA ADS] [CrossRef]
  • Patsourakos, S., A. Vourlidas, Y.M. Wang, G. Stenborg, and A. Thernisien. What is the nature of EUV waves? First STEREO 3D observations and comparison with theoretical models. Sol. Phys., 259, 4971, 2009, DOI: 10.1007/s11207-009-9386-x. [NASA ADS] [CrossRef]
  • Pesnell, W.D., B.J. Thompson, and P.C. Chamberlin. The Solar Dynamics Observatory (SDO). Sol. Phys., 275, 3–15, 2012, DOI: 10.1007/s11207-011-9841-3. [NASA ADS] [CrossRef]
  • Podladchikova, O., and D. Berghmans. Automated detection of EIT waves and dimmings. Sol. Phys., 228, 265–284, 2005, DOI: 10.1007/s11207-005-5373-z. [NASA ADS] [CrossRef]
  • Podladchikova, O., A. Vourlidas, R.A.M. Van der Linden, J.-P. Wülser, and S. Patsourakos. Extreme ultraviolet observations and analysis of micro-eruptions and their associated coronal waves. Astrophys. J., 709, 369–376, 2010, DOI: 10.1088/0004-637X/709/1/369. [NASA ADS] [CrossRef]
  • Qu, M., F.Y. Shih, J. Jing, and H. Wang. Automatic solar flare detection using MLP, RBF, and SVM. Sol. Phys., 217, 157–172, 2003, DOI: 10.1023/A:1027388729489. [CrossRef]
  • Reinard, A.A., and D.A. Biesecker. Coronal mass ejection-associated coronal dimmings. Astrophys. J., 674, 576–585, 2008, DOI: 10.1086/525269. [NASA ADS] [CrossRef]
  • Robbrecht, E., and D. Berghmans. Automated recognition of coronal mass ejections (CMEs) in near-realtime data. Astron. Astrophys., 425, 1097–1106, 2004, DOI: 10.1051/0004-6361:20041302. [NASA ADS] [CrossRef] [EDP Sciences]
  • Ryan, D.F., R.O. Milligan, P.T. Gallagher, B.R. Dennis, A.K. Tolbert, R.A. Schwartz, and C.A. Young. The thermal properties of solar flares over three solar cycles using GOES X-ray observations. Astrophys. J. Suppl. Ser., 202, 11, 2012, DOI: 10.1088/0067-0049/202/2/11. [NASA ADS] [CrossRef]
  • Shen, Y., Y. Liu, J. Su, H. Li, R. Zhao, Z. Tian, K. Ichimoto, and K. Shibata. Diffraction, refraction, and reflection of an extreme-ultraviolet wave observed during its interactions with remote active regions. Astrophys. J. Lett., 773, L33, 2013, DOI: 10.1088/2041-8205/773/2/L33. [CrossRef]
  • Snodgrass, H.B., and R.K. Ulrich. Rotation of Doppler features in the solar photosphere. Astrophys. J., 351, 309–316, 1990, DOI: 10.1086/168467. [NASA ADS] [CrossRef]
  • Sterling, A.C., and H.S. Hudson. Yohkoh SXT observations of X-ray “dimming” associated with a halo coronal mass ejection. Astrophys. J. Lett., 491 (1), L55, 1997, DOI: 10.1086/311043. [NASA ADS] [CrossRef]
  • Thompson, B.J., E.W. Cliver, N. Nitta, C. Delannée, and J.-P. Delaboudinière. Coronal dimmings, energetic CMEs in April-May 1988. Geophys. Res. Lett., 27, 1431–1434, 2000, DOI: 10.1029/1999GL003668. [NASA ADS] [CrossRef]
  • Thompson, B.J., J.B. Gurman, W.M. Neupert, J.S. Newmark, J.-P. Delaboudinire, et al. SOHO/EIT observations of the 1997 April 7 coronal transient: possible evidence of coronal Moreton waves. Astrophys. J. Lett., 517 (2), L151, 1999. DOI: 10.1029/98GL50429. [NASA ADS] [CrossRef]
  • Thompson, B.J., and D.C. Myers. A Catalog of Coronal “EIT Wave” Transients. Astrophys. J. Supp., 183, 225–243, 2009, DOI: 10.1088/0067-0049/183/2/225. [NASA ADS] [CrossRef]
  • Thompson, B.J., S.P. Plunkett, J.B. Gurman, J.S. Newmark, O.C. St. Cyr, and D.J. Michels. SOHO/EIT observations of an Earth-directed coronal mass ejection on May 12, 1997. Geophys. Res. Lett., 25 (14), 2465–2468, 1998, DOI: 10.1029/98GL50429. [NASA ADS] [CrossRef]
  • Tian, H., S.W. McIntosh, L. Xia, J. He, and X. Wang. What can we learn about solar coronal mass ejections, coronal dimmings, and extreme-ultraviolet jets through spectroscopic observations? Astrophys. J., 748, 106, 2012, DOI: 10.1088/0004-637X/748/2/106. [NASA ADS] [CrossRef]
  • Tsuneta, S., L. Acton, M. Bruner, J. Lemen, W. Brown, et al. The soft X-ray telescope for the SOLAR-A mission. Sol. Phys., 136, 37–67, 1991, DOI: 10.1007/BF00151694. [NASA ADS] [CrossRef]
  • Uchida, Y. Propagation of hydromagnetic disturbances in the solar corona and Moreton’s wave phenomenon. Sol. Phys., 4, 30–44, 1968, DOI: 10.1007/BF00146996. [NASA ADS] [CrossRef]
  • Uchida, Y. Diagnosis of coronal magnetic structure by flare-associated hydromagnetic disturbances. Publ. Astron. Soc. Jap., 22, 341, 1970.
  • Webb, D.F., R.P. Lepping, L.F. Burlaga, C.E. DeForest, D.E. Larson, S.F. Martin, S.P. Plunkett, and D.M. Rust. The origin and development of the May 1997 magnetic cloud. J. Geophys. Res., 105, 27251–27260, 2000, DOI: 10.1029/2000JA000021. [NASA ADS] [CrossRef]
  • Wills-Davey, M.J. Tracking large-scale propagating coronal wave fronts (EIT waves) using automated methods. Astrophys. J., 645, 757–765, 2006, DOI: 10.1086/504144. [NASA ADS] [CrossRef]
  • Wills-Davey, M.J., and G.D.R. Attrill. EIT waves: a changing understanding over a solar cycle. Space Sci. Rev., 149, 325–353, 2009, DOI: 10.1007/s11214-009-9612-8. [NASA ADS] [CrossRef]
  • Wills-Davey, M.J., C.E. DeForest, and J.O. Stenflo. Are “EIT waves” fast-mode MHD waves? Astrophys. J., 664, 556–562, 2007, DOI: 10.1086/519013. [NASA ADS] [CrossRef]
  • Wuelser, J.-P., J.R. Lemen, T.D. Tarbell, C.J. Wolfson, J.C. Cannon, et al. EUVI: the STEREO-SECCHI extreme ultraviolet imager. In: S., Fineschi, and M.A. Gummin, Editors, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 5171 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 111–122, 2004, DOI: 10.1117/12.506877.
  • Zhukov, A.N. EIT wave observations and modeling in the STEREO era. J. Atmos. Sol. Terr. Phys., 73, 1096–1116, 2011, DOI: 10.1016/j.jastp.2010.11.030. [CrossRef]
  • Zhukov, A.N., and F. Auchère. On the nature of EIT waves, EUV dimmings and their link to CMEs. Astron. Astrophys., 427, 705–716, 2004, DOI: 10.1051/0004-6361:20040351. [NASA ADS] [CrossRef] [EDP Sciences]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.