Issue
J. Space Weather Space Clim.
Volume 6, 2016
Scientific Challenges in Thermosphere-Ionosphere Forecasting
Article Number A4
Number of page(s) 11
DOI https://doi.org/10.1051/swsc/2015041
Published online 25 January 2016
  • Akasofu, S.-I. Energy coupling between the solar wind and the magnetosphere. Space Sci. Rev., 28, 121–190, 1981. [CrossRef] [Google Scholar]
  • Baker, K.B., and S. Wing. A new magnetic coordinate system for conjugate studies at high latitudes. J. Geophys. Res., 94 (A7), 9139–9143, 1989, DOI: 10.1029/JA094iA07p09139. [CrossRef] [Google Scholar]
  • Bruinsma, S.L., and J.M. Forbes. Global observation of traveling atmospheric disturbances (TADs) in the thermosphere. Geophys. Res. Lett., 34, L14103, 2007, DOI: 10.1029/2007GL030243. [CrossRef] [Google Scholar]
  • Bruinsma, S.L., E. Doornbos, and B.R. Bowman. Validation of GOCE densities and evaluation of thermosphere models. Adv. Space Res., 54, 576–585, 2014, DOI: 10.1016/j.asr.2014.04.008. [CrossRef] [Google Scholar]
  • Burke, W.J., C.Y. Huang, F.A. Marcos, and J.O. Wise. Interplanetary control of thermospheric densities during large magnetic storms. J. Atmos. Sol. Terr. Phys., 69, 279–287, 2007. [CrossRef] [Google Scholar]
  • Burke, W.J., C.Y. Huang, D.R. Weimer, J.O. Wise, G.R. Wilson, C.S. Lin, and F.A. Marcos. Energy, power requirements of the global thermosphere during the magnetic storm of November 10, 2004. J. Atmos. Sol. Terr. Phys., 309–318, 2010, DOI: 10.1016/j.jastp.2009.6.005. [CrossRef] [Google Scholar]
  • Casali, S., and W. Barker. Dynamic Calibration Atmosphere (DCA) for the High Accuracy Satellite Drag Model (HASDM). AIAA-2002-4888, AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Monterey, California, 2002. [Google Scholar]
  • Cosgrove, R.B., H. Bahcivan, S. Chen, R.J. Strangeway, J. Ortega, M. Alhassan, Y. Xu, M. Van Welie, J. Rehberger, S. Musielak, and N. Cahill. Empirical model of Poynting flux derived from FAST data and a cusp signature. J. Geophys. Res., 119, 411–430, 2014, DOI: 10.1002/2013JA019105. [CrossRef] [Google Scholar]
  • Coumans, V., J.-C. Gerard, B. Hubert, M. Meurant, and S.B. Mende. Global auroral conductance distribution due to electron and proton precipitation from IMAGE-FUV observations. Ann. Geophys., 22, 1595–1611, 2004. [CrossRef] [Google Scholar]
  • Crowley, G.D.J., K.A. Knipp, J. Drake, E.S. Lei, and H. Lühr. Thermospheric density enhancements in the dayside cusp region during strong BY conditions. Geophys. Res. Lett., 37, L07110, 2010, DOI: 10.1029/2009GLo42143. [CrossRef] [Google Scholar]
  • Evans, D.S., N.C. Maynard, J. Trøim, T. Jacobsen, and A. Egeland. Auroral vector electric field and particle comparisons, 2. Electrodynamics of an arc. J. Geophys. Res., 82, 2235–2249, 1977. [CrossRef] [Google Scholar]
  • Fuller-Rowell, T.J., and D.S. Evans. Height-integrated Pedersen and Hall conductivity patterns inferred from the TIROS-NOAA satellite data. J. Geophys. Res., 92, 7606–7618, 1987. [CrossRef] [Google Scholar]
  • Huang, C.Y., and W.J. Burke. Transient sheets of field-aligned current observed by DMSP during the main phase of a magnetic superstorm. J. Geophys. Res., 109, A06303, 2004, DOI: 10.1029/2003JA010067. [Google Scholar]
  • Huang, C.Y., W.J. Burke, B.R. Bowman, F.A. Marcos, J.O. Wise, and C.S. Lin. Thermospheric density modeling during magnetic storms. Proceedings AIAA Guidance, Navigation and Control Conference, Honolulu, Hawaii, 2008. [Google Scholar]
  • Huang, C.Y., Y.-J. Su, E.K. Sutton, D.R. Weimer, and R.L. Davidson. Energy coupling during the August 2011 magnetic storm. J. Geophys. Res., 1219–1232, 2014a, DOI: 10.1002/2014JA019297. [CrossRef] [Google Scholar]
  • Huang, Y., C.Y. Huang, Y.-J. Su, Y. Deng, and X. Fang. Ionization due to electron and proton precipitation during the August 2011 storm. J. Geophys. Res. Space Phys., 119, 3106–3116, 2014b, DOI: 10.1002/2013JA019671. [CrossRef] [Google Scholar]
  • Kelley, M.C., D.J. Knudsen, and J.F. Vickrey. Poynting flux measurements on a satellite: a diagnostic tool for space research. J. Geophys. Res., 96 (A1), 201–207, 1991. [CrossRef] [Google Scholar]
  • Knipp, D., S. Eriksson, L. Kilcommons, G. Crowley, J. Lei, M. Hairston, and K. Drake. Extreme Poynting flux in the dayside thermosphere: examples and statistics. Geophys. Res. Lett., 38, L16102, 2011, DOI: 10.1029/1022GL048302. [CrossRef] [Google Scholar]
  • Knipp, D.J., B.A. Amery, M. Engebretson, X. Li, A.H. McAllister, et al. An overview of the early November 1993 geomagnetic storm. J. Geophys. Res., 103 (A11), 26197–26220, 1998, DOI: 10.1029/98JA00762. [CrossRef] [Google Scholar]
  • Knipp, D.J., W.K. Tobiska, and B.A. Emery. Direct and indirect thermospheric heating sources for solar cycles 21–23. Sol. Phys., 224, 495–505, 2004. [CrossRef] [Google Scholar]
  • Li, W., D. Knipp, J. Lei, and J. Raeder. The relation between dayside local Poynting flux enhancement and cusp reconnection. J. Geophys. Res., 116, A08301, 2011, DOI: 10.1029/2011JA016566. [Google Scholar]
  • Li, H., C. Wang, W.U. Xu, and J.R. Kan. Characteristics of magnetospheric energetics during geomagnetic storms. J. Geophys. Res., 117, A01225, 2012, DOI: 10.1029/2012JA017584. [Google Scholar]
  • Liu, R., H. Lühr, and S.-Y. Ma. Storm-time related mass density anomalies in the polar cap as observed by CHAMP. Ann. Geophys., 28 (1), 165–180, 2010. [CrossRef] [Google Scholar]
  • Lühr, H., M. Rother, W. Köhler, P. Ritter, and L. Grunwaldt. Thermospheric up-welling in the cusp region: evidence from CHAMP observations. Geophys. Res. Lett., 31, L06805, 2004, DOI: 10.1029/2003GL019314. [Google Scholar]
  • Mayr, H.G., and H. Volland. Magnetic storm effects in the neutral composition. Planet. Space Sci., 20, 379, 1972. [CrossRef] [Google Scholar]
  • McHarg, M., F. Chun, D. Knipp, G. Lu, B. Emery, and A. Ridley. High-latitude Joule heating response to IMF inputs. J. Geophys. Res., 110, A08309, 2005, DOI: 10.1029/2004JA010949. [CrossRef] [Google Scholar]
  • Newell, P.T., W.J. Burke, E.R. Sanchez, C.-I. Meng, M.E. Greenspan, and C.R. Clauer. The low-latitude boundary layer and the boundary plasma sheet at low altitude: prenoon precipitation regions and convection reversal boundaries. J. Geophys. Res., 96 (A12), 21013–21023, 1991. [CrossRef] [Google Scholar]
  • Newell, P.T., and C.-I. Meng. Mapping the dayside ionosphere to the magnetosphere according to particle precipitation characteristics. Geophys. Res. Lett., 19 (6), 609–612, 1992. [CrossRef] [Google Scholar]
  • Picone, J.M., A.E. Hedin, D.P. Drob, and A.C. Aiken. NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J. Geophys. Res., 107 (A12), 1468, 2002, DOI: 10.1029/2002JA009430. [NASA ADS] [CrossRef] [Google Scholar]
  • Prolss, G.W. Magnetic storm associated perturbations of the upper atmosphere: recent results obtained by satellite-borne gas analyzers. Rev. Geophys., 18, 183, 1980. [CrossRef] [Google Scholar]
  • Rich, F.J., and M. Hairston. Large-scale convection patterns observed by DMSP. J. Geophys. Res., 99, 3827–3844, 1994. [CrossRef] [Google Scholar]
  • Richmond, A.D. On the ionospheric application of Poynting’s theorem. J. Geophys. Res., 115, A10311, 2010, DOI: 10.1029/2010JA015768. [CrossRef] [Google Scholar]
  • Storz, M.F., B.R. Bowman, and J.I. Branson. Dynamic calibration atmosphere (DCA) for the High Accuracy Satellite Drag Model (HASDM), AIAA-2002-4886. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Monterey, California, 2002. [Google Scholar]
  • Sutton, E.K. Normalized force coefficients for satellites with elongated shapes. J. Spacecr. Rockets, 46 (1), 112–116, 2009, DOI: 10.2514/1.40940. [CrossRef] [Google Scholar]
  • Sutton, E.K., J.M. Forbes, and R.S. Nerem. Global thermospheric neutral density and wind response to the severe 2003 geomagnetic storms from CHAMP accelerometer data. J. Geophys. Res., 110, A09S40, 2005, DOI: 10.1029/2004JA010985. [CrossRef] [Google Scholar]
  • Vondrak, R.R., and R.M. Robinson. Inference of high-latitude ionization and conductivity from AE-C measurements of auroral electron fluxes. J. Geophys. Res., 90, 7505–7512, 1985. [CrossRef] [Google Scholar]
  • Weimer, D.R. Improved ionospheric electrodynamic models and application to calculating Joule heating rates. J. Geophys. Res., 110, A05306, 2005, DOI: 10.1029/2005JA010884. [Google Scholar]
  • Weiss, L.A., P.H. Reiff, J.J. Moses, R.A. Heelis, and D.B. Moore. Energy dissipation in substorms. Substorms I, ESA SP-335, Paris, Eur. Space Agency, 309–317, 1992. [Google Scholar]
  • Wilder, F.D., G. Crowley, S. Eriksson, P.T. Newell, and M.R. Hairston. Ionospheric Joule heating, fast flow channels, and magnetic field line topology for IMF By-dominant conditions: observations and comparisons with predicted reconnection jet speeds. J. Geophys. Res., 117, A11311, 2012, DOI: 10.1029/2012JA017914. [CrossRef] [Google Scholar]
  • Zhang, Y., L.J. Paxton, D. Morrison, B. Wolven, H. Kil, C.-I. Meng, S.B. Mende, and T.J. Immel. O//N2 changes during 1–4 October 2002 storms: IMAGE SI-13 and TIMED//GUVI observations. J. Geophys. Res., 109, A10308, 2004, DOI: 10.1029/2004JA010441. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.