Issue
J. Space Weather Space Clim.
Volume 6, 2016
Scientific Challenges in Thermosphere-Ionosphere Forecasting
Article Number A5
Number of page(s) 16
DOI https://doi.org/10.1051/swsc/2015046
Published online 25 January 2016
  • Burns, A.G., S.C. Solomon, L. Qian, W. Wang, B.A. Emery, M. Wiltberger, and D.R. Weimer. The effects of corotating interaction region/high speed stream storms on the thermosphere and ionosphere during the last solar minimum. J. Atmos. Sol. Terr. Phys., 83, 79–87, 2012. [CrossRef] [Google Scholar]
  • Chandola, V., A. Banerjee, and V. Kumar. Anomaly detection: a survey. ACM Comput. Surv., 41 (3), 15, 2009. [CrossRef] [Google Scholar]
  • Datta-Barua, S., T. Walter, G.S. Bust, and W. Wanner. Effects of solar cycle 24 activity on WAAS navigation. Space Weather, 12 (1), 46–63, 2014, DOI: 10.1002/2013sw000982. [CrossRef] [Google Scholar]
  • Fagundes, P.R., M.T.A.H. Muella, J.A. Bittencourt, Y. Sahai, W.L.C. Lima, et al. Nighttime ionosphere-thermosphere coupling observed during an intense geomagnetic storm. Adv. Space Res., 41, 539–547, 2008. [CrossRef] [Google Scholar]
  • Forbes, J.M., S.E. Palo, and X. Zhang. Variability of the ionosphere. J. Atmos. Sol. Terr. Phys., 62, 685–693, 2000. [Google Scholar]
  • Grnitz, N., M. Kloft, K. Rieck, and U. Brefeld. Toward supervised anomaly detection. JAIR, 46, 235–262, 2013. [Google Scholar]
  • Hibberd, F.H. Day-to-day variability of the Sq geomagnetic field variation. Aust. J. Phys., 34 (1), 81–90, 1981. [CrossRef] [Google Scholar]
  • Immel, T.J., and A.J. Mannucci. Ionospheric redistribution during geomagnetic storms. J. Geophys. Res. [Space Phys.], 118, 7928–7939, 2013, DOI: 10.1002/2013JA018919. [CrossRef] [Google Scholar]
  • Immel, T.J., S.B. Mende, M.E. Hagan, P.M. Kintner, and S.L. England. Evidence of tropospheric effects on the ionosphere. EOS, 90 (9), 69–70, 2009. [CrossRef] [Google Scholar]
  • Komjathy, A., L. Sparks, B.D. Wilson, and A.J. Mannucci. Automated daily processing of more than 1000 ground-based GPS receivers for studying intense ionospheric storms. Radio Science, 40, RS6006, 2005a, DOI: 10.1029/2005RS003279. [CrossRef] [Google Scholar]
  • Komjathy, A., L. Sparks, A.J. Mannucci, and A. Coster. The ionospheric impact of the October 2003 storm event on wide area augmentation system. GPS Solutions, 9 (1), 41–50, 2005b, DOI: 10.1007/s10291-004-0126-2. [CrossRef] [Google Scholar]
  • Lee, W.K., H. Kil, Y.S. Kwak, Q. Wu, S. Cho, and J.U. Park. The winter anomaly in the middle latitude F region during the solar minimum period observed by the constellation observing system for meteorology, ionosphere, and climate. J. Geophys. Res., 116, A02302, 2011, DOI: 10.1029/2010JA015815. [Google Scholar]
  • Liu, J.Y., Y.J. Chuo, S.J. Shan, Y.B. Tsai, Y.I. Chen, S.A. Pulinets, and S.B. Yu. Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurements. Ann. Geophys., 22, 1585–1593, 2004. [CrossRef] [Google Scholar]
  • Lu, G., M.E. Hagan, K. Häusler, E. Doornbos, S. Bruinsma, B.J. Anderson, and H. Korth. Global ionospheric and thermospheric response to the 5 April 2010 geomagnetic storm: an integrated data-model investigation. J. Geophys. Res. [Space Phys.], 119, 10358–10375, 2015, DOI: 10.1002/2014JA020555. [CrossRef] [Google Scholar]
  • Luo, M., S. Pullen, S. Datta-Barua, G. Zhang, T. Walter, and P. Enge. LAAS study of slow-moving ionosphere anomalies and their potential impacts, ION GNSS 18th International Technical Meeting of the Satellite Division, Long Beach, CA, 2337–2349, 2005. [Google Scholar]
  • Mandrikova, O.V., Y.A. Polozov, V.V. Bogdanov, and E.A. Zhizhiki. Method of detection abnormal features in ionosphere critical frequency data on the basis of wavelet transformation and neural networks combination. JSEA, 5, 181–187, 2012, DOI: 10.4236/jsea.2012.512b035. [Google Scholar]
  • Mannucci, A.J., B.D. Wilson, D.N. Yuan, C.H. Ho, U.J. Lindqwister, and T.F. Runge. A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Science, 33 (3), 565–582, 1998. [Google Scholar]
  • Mannucci, A.J., O.P. Verkhoglyadova, B.T. Tsurutani, X. Meng, X. Pi, et al. Medium-range thermosphere-ionosphere storm forecasts. Space Weather, 13, 125–129, 2015, DOI: 10.1002/2014SW001125. [Google Scholar]
  • Mata, F., P. Zuraniewski, M. Mandjes, and M. Mellia. Anomaly detection in diurnal data. Computer Networks, 60, 187–200, 2014. [CrossRef] [Google Scholar]
  • Menvielle, M., and A. Berthelier. The K-derived planetary indices: description and availability. Rev. Geophys., 29 (3), 415–432, 1991. [Google Scholar]
  • Pedatella, N.M., J.M. Forbes, J. Lei, J.P. Thayer, and K.M. Larson. Changes in the longitudinal structure of the low-latitude ionosphere during the July 2004 sequence of geomagnetic storms. J. Geophys. Res., 113, A11315, 2008, DOI: 10.1029/2008JA013539. [CrossRef] [Google Scholar]
  • Pi, X., A.J. Mannucci, B.A. Iijima, B.D. Wilson, A. Komjathy, T.F. Runge, and V. Akopian. Assimilative modeling of ionospheric disturbances with FORMOSAT-3/COSMIC and ground-based GPS measurements. Terr. Atmos. Ocean. Sci., 20, 273–285, 2009, DOI: 10.3319/TAO.2008.01.04.01(F3C). [CrossRef] [Google Scholar]
  • Pokhotelov, D., P.T. Jayachandran, C.N. Mitchel, and M.H. Denton. High-latitude ionospheric response to co-rotating interaction region- and coronal mass ejection-driven geomagnetic storms revealed by GPS tomography and ionosondes. Proc. R. Soc. A, 466, 3391–3408, 2010, DOI: 10.1098/rspa.2010.0080. [CrossRef] [Google Scholar]
  • Pulinets, S.A., D. Ouzounov, L. Ciraolo, R. Singh, G. Cervone, et al. Thermal, atmospheric and ionospheric anomalies around the time of the Colima M7.8 earthquake of 21 January 2003. Ann. Geophys., 24, 835–849, 2006. [CrossRef] [Google Scholar]
  • Richardson, I.G., and H.V. Cane. Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996–2009): catalog and summary of properties. Sol. Phys., 264, 189–237, 2010, DOI: 10.1007/s11207-010-9568-6. [NASA ADS] [CrossRef] [Google Scholar]
  • Schunk, R.W., L. Scherliess, J.J. Sojka, D.C. Thompson, D.N. Anderson, et al. Global Assimilation of Ionospheric Measurements (GAIM). Radio Science, 39, RS1S02, 2004, DOI: 10.1029/2002RS002794. [Google Scholar]
  • Sodemann, A.A., M.P. Ross, and B.J. Borghetti. A review of anomaly detection in automated surveillance. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev., 42 (6), 1257–1272, 2012. [CrossRef] [Google Scholar]
  • Steinwart, I., D. Hush, and C. Scovel. A classification framework for anomaly detection. JMLR, 6, 211–232, 2005. [Google Scholar]
  • Tsurutani, B., A.J. Mannucci, B. Iijima, M.A. Abdu, J.H.A. Sobral, et al. Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields. J. Geophys. Res., 109, A08302, 2004, DOI: 10.1029/2003JA010342. [NASA ADS] [CrossRef] [Google Scholar]
  • Tsurutani, B.T., O.P. Verkhoglyadova, A.J. Mannucci, G.S. Lakhina, and J.D. Huba. Extreme changes in the dayside ionosphere during a Carrington-type magnetic storm. J. Space Weather Space Clim., 47 (2), A05, 2012, DOI: 10.1051/swsc/2012004. [Google Scholar]
  • Wang, C., G.A. Hajj, X. Pi, I.G. Rosen, and B.D. Wilson. Development of the global assimilative ionospheric model. Radio Science, 39, RS1S06, 2004, DOI: 10.1029/2002RS002854. [Google Scholar]
  • Zhou, Y., Y. Wu, X. Qiao, and X. Zhang. Ionospheric anomalies detected by ground-based GPS before the Mw7.9 Wenchuan earthquake of May 12, 2008, China. J. Atmos. Sol. Terr. Phys., 71, 959–966, 2009. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.