Issue
J. Space Weather Space Clim.
Volume 6, 2016
Scientific Challenges in Thermosphere-Ionosphere Forecasting
Article Number A29
Number of page(s) 9
DOI https://doi.org/10.1051/swsc/2016023
Published online 14 July 2016
  • Abdu, M.A., C.G.M. Brum, I.S. Batista, J.H.A. Sobral, E.R. de Paula, and J.R. Souza. Solar flux effects on equatorial ionization anomaly and total electron content over Brazil: observational results versus IRI representations. Adv. Space Res., 42, 617–625, 2008, DOI: 10.1016/j.asr.2007.09.043. [CrossRef] [Google Scholar]
  • Anderson, D.N., and J.A. Klobuchar. Modeling the total electron content observations above Ascension Island. J. Geophys. Res., 88, 8020–8024, 1983. [CrossRef] [Google Scholar]
  • Anderson, D.N., M. Mendillo, and B. Herniter. A semi-empirical low-latitude ionospheric model. Radio Sci., 22, 292–306, 1987. [CrossRef] [Google Scholar]
  • Anderson, D.N., J.M. Forbes, and M. Codrescu. A fully analytic, low- and middle-latitude ionospheric model. J. Geophys. Res., 94, 1520–1524, 1989. [CrossRef] [Google Scholar]
  • Anderson, D.N., D.T. Decker, and C.E. Valladares. Global theoretical ionospheric model (GTIM) in Solar-Terrestrial Energy Program: Handbook of Ionospheric Models, Natl. Oceanic and Atmos. Admin, Boulder, CO, 133–152, 1996. [Google Scholar]
  • Appleton, E.V. Two anomalies in the ionosphere. Nature, 157, 691–693, 1946. [NASA ADS] [CrossRef] [Google Scholar]
  • Bailey, G.J., R.J. Moffett, and J.A. Murphy. Interhemispheric flow of thermal plasma in a closed magnetic flux tube at mid-latitudes under sunspot minimum conditions. Planet. Space Sci., 26, 753–765, 1978. [CrossRef] [Google Scholar]
  • Balan, N., G.J. Bailey, and B. Jayachandran. Ionospheric evidence for a nonlinear relationship between the solar EUV and 10.7-cm fluxes during an intense solar cycle. Planet. Space Sci., 41, 141–145, 1993. [CrossRef] [Google Scholar]
  • Barman, M.K., A.K. Barbara, and M. Devi. Measured and computed ionospheric electron content in the equatorial anomaly crest region. J. Atmos. Sol. Terr. Phys., 59, 2069–2075, 1997. [CrossRef] [Google Scholar]
  • Baruah, S., P.K. Bhuyan, and T.R. Tyagi. Modeling of ionospheric electron content over Lunping–an empirical approach. Indian J. Radio Space Phys., 22, 325–330, 1993. [Google Scholar]
  • Batista, I.S., R.T. De Medeiros, M.A. Abdu, J.R. De Sousa, G.J. Bailey, and E.R. De Paula. Equatorial ionosphere vertical plasma drift model over the Brazilian region. J. Geophys. Res., 101, 10887–10892, 1996. [CrossRef] [Google Scholar]
  • Bent, R.B., S.K. Llewellyn, and M.K. Walloch. Description and evaluation of the Bent ionospheric model, DBA Systems, Inc, Melbourne, Florida, F04701-72-C-0380, Space & Missile Systems Organization, Los Angeles, California, 1972. [Google Scholar]
  • Bilitza, D., S.A. Brown, M.Y. Wang, J.R. Souza, and P.A. Roddy. Measurements and IRI model predictions during the recent solar minimum. J. Atmos. Sol. Terr. Phys., 86, 99–106, 2012, DOI: 10.1016/j.jastp.2012.06.010. [CrossRef] [Google Scholar]
  • Brum, C.G.M., F.S. Rodrigues, P.T. dos Santos, A.C. Matta, N. Aponte, S.A. Gonzalez, and E. Robles. A modeling study of foF2 and hmF2 parameters measured by the Arecibo incoherent scatter radar and comparison with IRI model predictions for solar cycles 21, 22, and 23. J. Geophys. Res., 116, A03324, 2011, DOI: 10.1029/2010JA015727. [CrossRef] [Google Scholar]
  • Brum, C.G.M., M.A. Abdu, I.S. Batista, A.J. Carrasco, and P.M. Terra. Numerical simulation of nighttime electron precipitation in the lower ionosphere over a sub-auroral region. Adv. Space Res., 37, 1051–1057, 2006, DOI: 10.1016/j.asr.2006.02.003. [CrossRef] [Google Scholar]
  • Brum, C.G.M., C.A. Tepley, J.T. Fentzke, E. Robles, P.T. dos Santos, and S.A. Gonzalez. Long-term changes in the thermospheric neutral winds over Arecibo: climatology based on over three decades of Fabry-Perot observations. J. Geophys. Res., 117, A00H14, 2012, DOI: 10.1029/2011JA016458. [CrossRef] [Google Scholar]
  • Budden, K.G. Radio waves in the ionosphere: the mathematical theory of the reflection of radio waves from stratified ionized layers, Cambridge University Press, Cambridge, England, 1961. [Google Scholar]
  • Chakraborty, S.K., and R. Hajra. Solar control of ambient ionization of the ionosphere near the crest of the equatorial anomaly in the Indian zone. Ann. Geophys., 26, 47–57, 2008. [CrossRef] [Google Scholar]
  • Chakraborty, S.K., and R. Hajra. Electrojet control of ambient ionization near the crest of the equatorial anomaly in the Indian zone. Ann. Geophys., 27, 93–105, 2009. [CrossRef] [Google Scholar]
  • Chandra, H., and R.G. Rastogi. Geomagnetic storm effects on ionospheric drifts and equatorial Es over the magnetic equator. Ind. J. Radio Space Phys., 3, 332–336, 1974. [Google Scholar]
  • Chapman, S. The absorption and dissociative or ionizing effect of monochromatic radiation of an atmosphere on a rotating Earth. Proc. Phys. Soc., 43, 26–45, 1931. [NASA ADS] [CrossRef] [Google Scholar]
  • Chapman, S. The equatorial electrojet as detected from the abnormal electric current distribution above Huancayo, Peru and elsewhere. Arch. Meteorol. Gephys. Bioclimatal, A4, 368–390, 1951. [CrossRef] [Google Scholar]
  • Ching, B.K., and Y.T. Chiu. A phenomenological model of global ionospheric electron density in the E, F1 and F2 region. J. Atmos. Terr. Phys., 35, 1615–1630, 1973. [CrossRef] [Google Scholar]
  • Daniell, R.E., L.D. Brown, D.N. Anderson, M.W. Fox, P.H. Doherty, D.T. Decker, J.J. Sojka, and R.W. Schunk. Parameterized ionospheric model: a global ionospheric parameterization based on first principles models. Radio Sci., 30, 1499–1510, 1995. [CrossRef] [Google Scholar]
  • Das Gupta, A., and S. Basu. Investigations on ionospheric electron content in the equatorial region as obtained by orbiting beacon satellite. Ann. Geophys., 29, 409–419, 1973. [Google Scholar]
  • de Paula, E.R., J.R. de Souza, M.A. Abdu, G.J. Bailey, I.S. Batista, J.A. Bittencourt, and E. Bonelli. Ionospheric electron content over Brazilian low latitude and its comparison with the IRI and SUPIM models. Adv. Space Res., 18, 245–248, 1996. [CrossRef] [Google Scholar]
  • Doherty, P.H., J.A. Klobuchar, and J.M. Kunches. Eye on the ionosphere: the correlation between solar 10.7 cm radio flux and ionospheric range delay. GPS Sol., 3, 75–79, 2000. [CrossRef] [Google Scholar]
  • Duncan, R.A. The equatorial F-region of the ionosphere. J. Atmos. Terr. Phys., 18, 89–100, 1959. [CrossRef] [Google Scholar]
  • Ezquer, R.G., C. Brunini, M. Mosert, A. Meza, R. del V. Oviedo, E. Kiorcheff, and S.M. Radicella. GPS-VTEC measurements and IRI predictions in the South American sector. Adv. Space Res., 34, 2035–2043, 2004. [CrossRef] [Google Scholar]
  • Fugono, N., R. Hayashi, and Y. Ishizawa. ETS-II experiments part I: Japan’s first geostationary satellite. IEEE Trans. Aerosp. Electron. Syst., 16, 549–557,1980, DOI: 10.1109/TAES.1980.308921. [CrossRef] [Google Scholar]
  • Fuller-Rowell, T.J. The “thermospheric spoon”: a mechanism for the semiannual density variation. J. Geophys. Res., 103, 3951–3956, 1998. [CrossRef] [Google Scholar]
  • Golton, E., and G.O. Walker. Observations of ionospheric electron content across the equatorial anomaly at sunspot minimum. J. Atmos. Terr. Phys., 33, 1–11, 1971. [CrossRef] [Google Scholar]
  • Gonzalez, W.D., J.A. Joselyn, Y. Kamide, H.W. Kroehl, G. Rostoker, B.T. Tsurutani, and V. Vasyliunas. What is a geomagnetic storm? J. Geophys. Res., 99, 5771–5792, 1994. [NASA ADS] [CrossRef] [Google Scholar]
  • Gulyaeva, T.L. Regional analytic model of ionospheric total electron content: monthly mean and standard deviation. Radio Sci., 34, 1507–1512, 1999. [CrossRef] [Google Scholar]
  • Hajra, R. A study on the variability of total electron content near the crest of the equatorial anomaly in the Indian zone. Ph.D. thesis, University of Calcutta, 2011. [Google Scholar]
  • Hajra, R., S.K. Chakraborty, S. Mazumdar, and S. Alex. Evolution of equatorial irregularities under varying electrodynamical conditions: a multitechnique case study from Indian longitude zone. J. Geophys. Res., 117, A08331, 2012, DOI: 10.1029/2012JA017808. [CrossRef] [Google Scholar]
  • Huang, Y.N., K. Cheng, and S.W. Chen. On the equatorial anomaly of the ionospheric total electron content near the northern anomaly crest. J. Geophys. Res., 94, 13515–13525, 1989. [CrossRef] [Google Scholar]
  • Jakowski, N., C. Mayer, M.M. Hoque, and V. Wilken. Total electron content models and their use in ionosphere monitoring. Radio Sci., 46, RS0D18, 2011, DOI: 10.1029/2010RS004620. [CrossRef] [Google Scholar]
  • Klobuchar, J.A., and R.S. Allen. A first-order prediction model of total electron content group path delay for a midlatitude ionosphere. Air Force Surveys in Geophysics, 222, AFCRL-70-0403, 1970. [Google Scholar]
  • Klobuchar, J.A., D.N. Anderson, and P.H. Doherty. Model studies of the latitudinal extent of the equatorial anomaly during equinoctial conditions. Radio Sci., 26, 1025–1047, 1991. [CrossRef] [Google Scholar]
  • MacDougall, J.W. The equatorial ionospheric anomaly and the equatorial electrojet. Radio Sci., 4, 805–810, 1969. [CrossRef] [Google Scholar]
  • Mahajan, K.K., and A.K. Dwivedi. Solar EUV flux during sunspot cycles 21, 22 and 23 – correlation with proxy indices and real time prediction. Indian J. Radio Space Phys., 34, 153–160, 2005. [Google Scholar]
  • Mannucci, A.J., O.P. Verkhoglyadova, B.T. Tsurutani, X. Meng, X. Pi, et al. Medium-range thermosphere-ionosphere storm forecasts. Space Weather, 13, 125–129, 2015, DOI: 10.1002/2014SW001125 [CrossRef] [Google Scholar]
  • Martyn, D.F. Geomagnetic anomalies of the F2 region and their interpretation. In: The Physics of the Ionosphere, Phys. Soc., London, 260–264, 1955. [Google Scholar]
  • Mayr, H.G., and K.K. Mahajan. Seasonal variation in the F2 region. J. Geophys. Res., 76, 1017–1027, 1971. [CrossRef] [Google Scholar]
  • McNamara, L.F. Prediction of total electron content using the International Reference Ionosphere in Environmental Research Papers. 853, AFGL-TR-83-0239, 1983. [Google Scholar]
  • Nisbet, J.S., and R. Divany. Instructions for running the PC version of the Penn State Mark III ionospheric model. Sci. Rep. CSSL SCI 484, Penn. State Univ., University Park, PA, 1987. [Google Scholar]
  • Norquist, D.C. Forecast performance assessment of a kinematic and a magnetohydrodynamic solar wind model. Space Weather, 11, 17–33, 2013, DOI: 10.1029/2012SW000853. [CrossRef] [Google Scholar]
  • Osborne, J.W. Prediction in multiple regression. Prac. Assess. Res. Eval., 7, 2000, http://pareonline.net/getvn.asp?v=7&n=2. [Google Scholar]
  • Pearson, K., and A. Lee. On the generalized probable error in multiple normal correlation. Biometrika, 6, 59–68, 1908. [CrossRef] [Google Scholar]
  • Rao, K.N.S. GAGAN–the Indian satellite based augmentation system. Indian J. Radio Space Phys., 36, 293–302, 2007. [Google Scholar]
  • Rastogi, R.G., and R.P. Sharma. Ionospheric electron content at Ahmedabad (near the crest of equatorial anomaly) by using beacon satellites transmissions during half a solar cycle. Planet. Space Sci., 19, 1505–1517, 1971. [CrossRef] [Google Scholar]
  • Rawer, K., D. Bilitza, and S. Ramakrishnan. Goals and status of the International Reference Ionosphere. Rev. Geophys. Space Phys., 16, 177–181, 1978. [CrossRef] [Google Scholar]
  • Richmond, A.D., S. Matsushita, and J.D. Tarpley. On the production mechanism of electric currents and fields in the ionosphere. J. Geophys. Res., 81, 547–555, 1976. [CrossRef] [Google Scholar]
  • Rishbeth, H., I.C.F. Muller-Wodarg, L. Zou, T.J. Fuller-Rowell, G.H. Millward, R.J. Moffett, D.W. Idenden, and A.D. Aylward. Annual and semiannual variations in the ionospheric F2-layer: II. Physical discussion. Ann. Geophys., 18, 945–956, 2000. [CrossRef] [Google Scholar]
  • Ross, W.J. Measurement of electron content at the magnetic equator. J. Geophys. Res., 71, 3671–3676, 1966. [CrossRef] [Google Scholar]
  • Rush, C.M., and A.D. Richmond. The relationship between the structure of the equatorial anomaly and the strength of the equatorial electrojet. J. Atmos. Terr. Phys., 35, 1171–1180, 1973. [CrossRef] [Google Scholar]
  • Sardon, E., A. Rius, and N. Zarraoa. Estimation of the receiver differential biases and ionospheric total electron content from Global Positioning System observations. Radio Sci., 29, 577–586, 1994, DOI: 10.1029/94RS00449. [NASA ADS] [CrossRef] [Google Scholar]
  • Schunk, R.W., and J.J. Sojka. Ionospheric models. In: H., Kohl, R. Ruster, and K. Schletel, Editors. Modern Ionospheric Science, Eur. Geophys. Soc, Katlenburg-Lindau, Germany, 181–215, 1996. [Google Scholar]
  • Sethia, G., R.G. Rastogi, M.R. Deshpande, and H. Chandra. Equatorial electrojet control of the low latitude ionosphere. J. Geomag. Geoelectr., 32, 207–216, 1980. [CrossRef] [Google Scholar]
  • Sibanda, P., and L.A. McKinnell. The applicability of existing topside ionospheric models to the South African region. S. Afr. J. Sci., 105, 387–390, 2009. [Google Scholar]
  • Souza, J.R., C.G.M. Brum, M.A. Abdu, I.S. Batista, W.D. Asevedo Jr., G.J. Bailey, and J.A. Bittencourt. Parameterized Regional Ionospheric Model and a comparison of its results with experimental data and IRI representations. Adv. Space Res., 46, 1032–1038, 2010. [CrossRef] [Google Scholar]
  • Stolle, C., C. Manoj, H. Luhr, S. Maus, and P. Alken. Estimating the daytime equatorial ionization anomaly strength from electric field proxies. J. Geophys. Res., 113, A09310, 2008, DOI: 10.1029/2007JA012781. [CrossRef] [Google Scholar]
  • Tascione, T.F., H.W. Kroehl, R. Creiger, J.W. Freeman Jr., R.A. Wolf, R.W. Spiro, R.V. Hilmer, J.W. Shade, and B.A. Hausman. New ionospheric and magnetospheric specification models. Radio Sci., 23, 211–222, 1988. [CrossRef] [Google Scholar]
  • Tobiska, W.K., D. Knipp, W.J. Burke, D. Bouwer, J. Bailey, D. Odstrcil, M.P. Hagan, J. Gannon, and B.R. Bowman. The Anemomilos prediction methodology for Dst. Space Weather, 11, 490–508, 2013, DOI: 10.1002/swe.20094. [CrossRef] [Google Scholar]
  • Venkata Ratnam, D., and A.D. Sarma. Modeling of Indian ionosphere using MMSE estimator for GAGAN applications. J. Ind. Geophys. Uni., 10, 303–312, 2006. [Google Scholar]
  • Walker, G.O., J.H.K. Ma, and E. Golton. The equatorial ionospheric anomaly in electron content from solar minimum to solar maximum for South East Asia. Ann. Geophys., 12, 195–209, 1994. [CrossRef] [Google Scholar]
  • Wu, C.C., C.D. Fry, J.Y. Liu, K. Liou, and C.L. Tseng. Annual TEC variation in the equatorial anomaly region during the solar minimum: September 1996-August 1997. J. Atmos. Sol. Terr. Phys., 66, 199–207, 2004. [CrossRef] [Google Scholar]
  • Zou, L., H. Rishbeth, I.C.F. Muller-Wodarg, A.D. Aylward, G.H. Millward, T.J. Fuller-Rowell, D.W. Idenden, and R.J. Moffett. Annual and semiannual variations in the ionospheric F2-layer. I. Modeling. Ann. Geophys., 18, 927–944, 2000. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.