Issue
J. Space Weather Space Clim.
Volume 6, 2016
Scientific Challenges in Thermosphere-Ionosphere Forecasting
Article Number A29
Number of page(s) 9
DOI https://doi.org/10.1051/swsc/2016023
Published online 14 July 2016
  • Abdu, M.A., C.G.M. Brum, I.S. Batista, J.H.A. Sobral, E.R. de Paula, and J.R. Souza. Solar flux effects on equatorial ionization anomaly and total electron content over Brazil: observational results versus IRI representations. Adv. Space Res., 42, 617–625, 2008, DOI: 10.1016/j.asr.2007.09.043. [CrossRef]
  • Anderson, D.N., and J.A. Klobuchar. Modeling the total electron content observations above Ascension Island. J. Geophys. Res., 88, 8020–8024, 1983. [CrossRef]
  • Anderson, D.N., M. Mendillo, and B. Herniter. A semi-empirical low-latitude ionospheric model. Radio Sci., 22, 292–306, 1987. [CrossRef]
  • Anderson, D.N., J.M. Forbes, and M. Codrescu. A fully analytic, low- and middle-latitude ionospheric model. J. Geophys. Res., 94, 1520–1524, 1989. [CrossRef]
  • Anderson, D.N., D.T. Decker, and C.E. Valladares. Global theoretical ionospheric model (GTIM) in Solar-Terrestrial Energy Program: Handbook of Ionospheric Models, Natl. Oceanic and Atmos. Admin, Boulder, CO, 133–152, 1996.
  • Appleton, E.V. Two anomalies in the ionosphere. Nature, 157, 691–693, 1946. [NASA ADS] [CrossRef]
  • Bailey, G.J., R.J. Moffett, and J.A. Murphy. Interhemispheric flow of thermal plasma in a closed magnetic flux tube at mid-latitudes under sunspot minimum conditions. Planet. Space Sci., 26, 753–765, 1978. [CrossRef]
  • Balan, N., G.J. Bailey, and B. Jayachandran. Ionospheric evidence for a nonlinear relationship between the solar EUV and 10.7-cm fluxes during an intense solar cycle. Planet. Space Sci., 41, 141–145, 1993. [CrossRef]
  • Barman, M.K., A.K. Barbara, and M. Devi. Measured and computed ionospheric electron content in the equatorial anomaly crest region. J. Atmos. Sol. Terr. Phys., 59, 2069–2075, 1997. [CrossRef]
  • Baruah, S., P.K. Bhuyan, and T.R. Tyagi. Modeling of ionospheric electron content over Lunping–an empirical approach. Indian J. Radio Space Phys., 22, 325–330, 1993.
  • Batista, I.S., R.T. De Medeiros, M.A. Abdu, J.R. De Sousa, G.J. Bailey, and E.R. De Paula. Equatorial ionosphere vertical plasma drift model over the Brazilian region. J. Geophys. Res., 101, 10887–10892, 1996. [CrossRef]
  • Bent, R.B., S.K. Llewellyn, and M.K. Walloch. Description and evaluation of the Bent ionospheric model, DBA Systems, Inc, Melbourne, Florida, F04701-72-C-0380, Space & Missile Systems Organization, Los Angeles, California, 1972.
  • Bilitza, D., S.A. Brown, M.Y. Wang, J.R. Souza, and P.A. Roddy. Measurements and IRI model predictions during the recent solar minimum. J. Atmos. Sol. Terr. Phys., 86, 99–106, 2012, DOI: 10.1016/j.jastp.2012.06.010. [CrossRef]
  • Brum, C.G.M., F.S. Rodrigues, P.T. dos Santos, A.C. Matta, N. Aponte, S.A. Gonzalez, and E. Robles. A modeling study of foF2 and hmF2 parameters measured by the Arecibo incoherent scatter radar and comparison with IRI model predictions for solar cycles 21, 22, and 23. J. Geophys. Res., 116, A03324, 2011, DOI: 10.1029/2010JA015727. [CrossRef]
  • Brum, C.G.M., M.A. Abdu, I.S. Batista, A.J. Carrasco, and P.M. Terra. Numerical simulation of nighttime electron precipitation in the lower ionosphere over a sub-auroral region. Adv. Space Res., 37, 1051–1057, 2006, DOI: 10.1016/j.asr.2006.02.003. [CrossRef]
  • Brum, C.G.M., C.A. Tepley, J.T. Fentzke, E. Robles, P.T. dos Santos, and S.A. Gonzalez. Long-term changes in the thermospheric neutral winds over Arecibo: climatology based on over three decades of Fabry-Perot observations. J. Geophys. Res., 117, A00H14, 2012, DOI: 10.1029/2011JA016458. [CrossRef]
  • Budden, K.G. Radio waves in the ionosphere: the mathematical theory of the reflection of radio waves from stratified ionized layers, Cambridge University Press, Cambridge, England, 1961.
  • Chakraborty, S.K., and R. Hajra. Solar control of ambient ionization of the ionosphere near the crest of the equatorial anomaly in the Indian zone. Ann. Geophys., 26, 47–57, 2008. [CrossRef]
  • Chakraborty, S.K., and R. Hajra. Electrojet control of ambient ionization near the crest of the equatorial anomaly in the Indian zone. Ann. Geophys., 27, 93–105, 2009. [CrossRef]
  • Chandra, H., and R.G. Rastogi. Geomagnetic storm effects on ionospheric drifts and equatorial Es over the magnetic equator. Ind. J. Radio Space Phys., 3, 332–336, 1974.
  • Chapman, S. The absorption and dissociative or ionizing effect of monochromatic radiation of an atmosphere on a rotating Earth. Proc. Phys. Soc., 43, 26–45, 1931. [NASA ADS] [CrossRef]
  • Chapman, S. The equatorial electrojet as detected from the abnormal electric current distribution above Huancayo, Peru and elsewhere. Arch. Meteorol. Gephys. Bioclimatal, A4, 368–390, 1951. [CrossRef]
  • Ching, B.K., and Y.T. Chiu. A phenomenological model of global ionospheric electron density in the E, F1 and F2 region. J. Atmos. Terr. Phys., 35, 1615–1630, 1973. [CrossRef]
  • Daniell, R.E., L.D. Brown, D.N. Anderson, M.W. Fox, P.H. Doherty, D.T. Decker, J.J. Sojka, and R.W. Schunk. Parameterized ionospheric model: a global ionospheric parameterization based on first principles models. Radio Sci., 30, 1499–1510, 1995. [CrossRef]
  • Das Gupta, A., and S. Basu. Investigations on ionospheric electron content in the equatorial region as obtained by orbiting beacon satellite. Ann. Geophys., 29, 409–419, 1973.
  • de Paula, E.R., J.R. de Souza, M.A. Abdu, G.J. Bailey, I.S. Batista, J.A. Bittencourt, and E. Bonelli. Ionospheric electron content over Brazilian low latitude and its comparison with the IRI and SUPIM models. Adv. Space Res., 18, 245–248, 1996. [CrossRef]
  • Doherty, P.H., J.A. Klobuchar, and J.M. Kunches. Eye on the ionosphere: the correlation between solar 10.7 cm radio flux and ionospheric range delay. GPS Sol., 3, 75–79, 2000. [CrossRef]
  • Duncan, R.A. The equatorial F-region of the ionosphere. J. Atmos. Terr. Phys., 18, 89–100, 1959. [CrossRef]
  • Ezquer, R.G., C. Brunini, M. Mosert, A. Meza, R. del V. Oviedo, E. Kiorcheff, and S.M. Radicella. GPS-VTEC measurements and IRI predictions in the South American sector. Adv. Space Res., 34, 2035–2043, 2004. [CrossRef]
  • Fugono, N., R. Hayashi, and Y. Ishizawa. ETS-II experiments part I: Japan’s first geostationary satellite. IEEE Trans. Aerosp. Electron. Syst., 16, 549–557,1980, DOI: 10.1109/TAES.1980.308921. [CrossRef]
  • Fuller-Rowell, T.J. The “thermospheric spoon”: a mechanism for the semiannual density variation. J. Geophys. Res., 103, 3951–3956, 1998. [CrossRef]
  • Golton, E., and G.O. Walker. Observations of ionospheric electron content across the equatorial anomaly at sunspot minimum. J. Atmos. Terr. Phys., 33, 1–11, 1971. [CrossRef]
  • Gonzalez, W.D., J.A. Joselyn, Y. Kamide, H.W. Kroehl, G. Rostoker, B.T. Tsurutani, and V. Vasyliunas. What is a geomagnetic storm? J. Geophys. Res., 99, 5771–5792, 1994. [NASA ADS] [CrossRef]
  • Gulyaeva, T.L. Regional analytic model of ionospheric total electron content: monthly mean and standard deviation. Radio Sci., 34, 1507–1512, 1999. [CrossRef]
  • Hajra, R. A study on the variability of total electron content near the crest of the equatorial anomaly in the Indian zone. Ph.D. thesis, University of Calcutta, 2011.
  • Hajra, R., S.K. Chakraborty, S. Mazumdar, and S. Alex. Evolution of equatorial irregularities under varying electrodynamical conditions: a multitechnique case study from Indian longitude zone. J. Geophys. Res., 117, A08331, 2012, DOI: 10.1029/2012JA017808. [CrossRef]
  • Huang, Y.N., K. Cheng, and S.W. Chen. On the equatorial anomaly of the ionospheric total electron content near the northern anomaly crest. J. Geophys. Res., 94, 13515–13525, 1989. [CrossRef]
  • Jakowski, N., C. Mayer, M.M. Hoque, and V. Wilken. Total electron content models and their use in ionosphere monitoring. Radio Sci., 46, RS0D18, 2011, DOI: 10.1029/2010RS004620. [CrossRef]
  • Klobuchar, J.A., and R.S. Allen. A first-order prediction model of total electron content group path delay for a midlatitude ionosphere. Air Force Surveys in Geophysics, 222, AFCRL-70-0403, 1970.
  • Klobuchar, J.A., D.N. Anderson, and P.H. Doherty. Model studies of the latitudinal extent of the equatorial anomaly during equinoctial conditions. Radio Sci., 26, 1025–1047, 1991. [CrossRef]
  • MacDougall, J.W. The equatorial ionospheric anomaly and the equatorial electrojet. Radio Sci., 4, 805–810, 1969. [CrossRef]
  • Mahajan, K.K., and A.K. Dwivedi. Solar EUV flux during sunspot cycles 21, 22 and 23 – correlation with proxy indices and real time prediction. Indian J. Radio Space Phys., 34, 153–160, 2005.
  • Mannucci, A.J., O.P. Verkhoglyadova, B.T. Tsurutani, X. Meng, X. Pi, et al. Medium-range thermosphere-ionosphere storm forecasts. Space Weather, 13, 125–129, 2015, DOI: 10.1002/2014SW001125 [CrossRef]
  • Martyn, D.F. Geomagnetic anomalies of the F2 region and their interpretation. In: The Physics of the Ionosphere, Phys. Soc., London, 260–264, 1955.
  • Mayr, H.G., and K.K. Mahajan. Seasonal variation in the F2 region. J. Geophys. Res., 76, 1017–1027, 1971. [CrossRef]
  • McNamara, L.F. Prediction of total electron content using the International Reference Ionosphere in Environmental Research Papers. 853, AFGL-TR-83-0239, 1983.
  • Nisbet, J.S., and R. Divany. Instructions for running the PC version of the Penn State Mark III ionospheric model. Sci. Rep. CSSL SCI 484, Penn. State Univ., University Park, PA, 1987.
  • Norquist, D.C. Forecast performance assessment of a kinematic and a magnetohydrodynamic solar wind model. Space Weather, 11, 17–33, 2013, DOI: 10.1029/2012SW000853. [CrossRef]
  • Osborne, J.W. Prediction in multiple regression. Prac. Assess. Res. Eval., 7, 2000, http://pareonline.net/getvn.asp?v=7&n=2.
  • Pearson, K., and A. Lee. On the generalized probable error in multiple normal correlation. Biometrika, 6, 59–68, 1908. [CrossRef]
  • Rao, K.N.S. GAGAN–the Indian satellite based augmentation system. Indian J. Radio Space Phys., 36, 293–302, 2007.
  • Rastogi, R.G., and R.P. Sharma. Ionospheric electron content at Ahmedabad (near the crest of equatorial anomaly) by using beacon satellites transmissions during half a solar cycle. Planet. Space Sci., 19, 1505–1517, 1971. [CrossRef]
  • Rawer, K., D. Bilitza, and S. Ramakrishnan. Goals and status of the International Reference Ionosphere. Rev. Geophys. Space Phys., 16, 177–181, 1978. [CrossRef]
  • Richmond, A.D., S. Matsushita, and J.D. Tarpley. On the production mechanism of electric currents and fields in the ionosphere. J. Geophys. Res., 81, 547–555, 1976. [CrossRef]
  • Rishbeth, H., I.C.F. Muller-Wodarg, L. Zou, T.J. Fuller-Rowell, G.H. Millward, R.J. Moffett, D.W. Idenden, and A.D. Aylward. Annual and semiannual variations in the ionospheric F2-layer: II. Physical discussion. Ann. Geophys., 18, 945–956, 2000. [CrossRef]
  • Ross, W.J. Measurement of electron content at the magnetic equator. J. Geophys. Res., 71, 3671–3676, 1966. [CrossRef]
  • Rush, C.M., and A.D. Richmond. The relationship between the structure of the equatorial anomaly and the strength of the equatorial electrojet. J. Atmos. Terr. Phys., 35, 1171–1180, 1973. [CrossRef]
  • Sardon, E., A. Rius, and N. Zarraoa. Estimation of the receiver differential biases and ionospheric total electron content from Global Positioning System observations. Radio Sci., 29, 577–586, 1994, DOI: 10.1029/94RS00449. [NASA ADS] [CrossRef]
  • Schunk, R.W., and J.J. Sojka. Ionospheric models. In: H., Kohl, R. Ruster, and K. Schletel, Editors. Modern Ionospheric Science, Eur. Geophys. Soc, Katlenburg-Lindau, Germany, 181–215, 1996.
  • Sethia, G., R.G. Rastogi, M.R. Deshpande, and H. Chandra. Equatorial electrojet control of the low latitude ionosphere. J. Geomag. Geoelectr., 32, 207–216, 1980. [CrossRef]
  • Sibanda, P., and L.A. McKinnell. The applicability of existing topside ionospheric models to the South African region. S. Afr. J. Sci., 105, 387–390, 2009.
  • Souza, J.R., C.G.M. Brum, M.A. Abdu, I.S. Batista, W.D. Asevedo Jr., G.J. Bailey, and J.A. Bittencourt. Parameterized Regional Ionospheric Model and a comparison of its results with experimental data and IRI representations. Adv. Space Res., 46, 1032–1038, 2010. [CrossRef]
  • Stolle, C., C. Manoj, H. Luhr, S. Maus, and P. Alken. Estimating the daytime equatorial ionization anomaly strength from electric field proxies. J. Geophys. Res., 113, A09310, 2008, DOI: 10.1029/2007JA012781. [CrossRef]
  • Tascione, T.F., H.W. Kroehl, R. Creiger, J.W. Freeman Jr., R.A. Wolf, R.W. Spiro, R.V. Hilmer, J.W. Shade, and B.A. Hausman. New ionospheric and magnetospheric specification models. Radio Sci., 23, 211–222, 1988. [CrossRef]
  • Tobiska, W.K., D. Knipp, W.J. Burke, D. Bouwer, J. Bailey, D. Odstrcil, M.P. Hagan, J. Gannon, and B.R. Bowman. The Anemomilos prediction methodology for Dst. Space Weather, 11, 490–508, 2013, DOI: 10.1002/swe.20094. [CrossRef]
  • Venkata Ratnam, D., and A.D. Sarma. Modeling of Indian ionosphere using MMSE estimator for GAGAN applications. J. Ind. Geophys. Uni., 10, 303–312, 2006.
  • Walker, G.O., J.H.K. Ma, and E. Golton. The equatorial ionospheric anomaly in electron content from solar minimum to solar maximum for South East Asia. Ann. Geophys., 12, 195–209, 1994. [CrossRef]
  • Wu, C.C., C.D. Fry, J.Y. Liu, K. Liou, and C.L. Tseng. Annual TEC variation in the equatorial anomaly region during the solar minimum: September 1996-August 1997. J. Atmos. Sol. Terr. Phys., 66, 199–207, 2004. [CrossRef]
  • Zou, L., H. Rishbeth, I.C.F. Muller-Wodarg, A.D. Aylward, G.H. Millward, T.J. Fuller-Rowell, D.W. Idenden, and R.J. Moffett. Annual and semiannual variations in the ionospheric F2-layer. I. Modeling. Ann. Geophys., 18, 927–944, 2000. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.