J. Space Weather Space Clim.
Volume 6, 2016
Scientific Challenges in Thermosphere-Ionosphere Forecasting
Article Number E01
Number of page(s) 10
Published online 14 October 2016
  • Borries, C., J. Berdermann, N. Jakowski, and V. Wilken. Ionospheric storms – a challenge for empirical forecast of the total electron content. J. Geophys. Res. [Space Phys.], 120 (4), 3175–3186, 2015, DOI: 10.1002/2015ja020988. [Google Scholar]
  • Buonsanto, M. Ionospheric storms – a review. Space Sci. Rev., 88 (3–4), 563–601, 1999, DOI: 10.1023/A:1005107532631. [Google Scholar]
  • Chartier, A.T., D.R. Jackson, and C.N. Mitchell. A comparison of the effects of initializing different thermosphere-ionosphere model fields on storm time plasma density forecasts. J. Geophys. Res. [Space Phys.], 118 (11), 7329–7337, 2013, DOI: 10.1002/2013JA019034. [Google Scholar]
  • Colaninno, R.C., A. Vourlidas, and C.C. Wu. Quantitative comparison of methods for predicting the arrival of coronal mass ejections at Earth based on multiview imaging. J. Geophys. Res. [Space Phys.], 118 (11), 6866–6879, 2013, DOI: 10.1002/2013JA019205. [Google Scholar]
  • Connor, H.K., E. Zesta, M. Fedrizzi, Y. Shi, J. Raeder, M.V. Codrescu, and T.J. Fuller-Rowell. Modeling the ionosphere-thermosphere response to a geomagnetic storm using physics-based magnetospheric energy input: OpenGGCM-CTIM results. J. Space Weather Space Clim., 6, A25, 2016, DOI: 10.1051/swsc/2016019. [CrossRef] [EDP Sciences] [Google Scholar]
  • Crowley, G., D.J. Knipp, K.A. Drake, J. Lei, E. Sutton, and H. Luhr. Thermospheric density enhancements in the dayside cusp region during strong B-Y conditions. Geophy. Res. Lett., 37, L07110, 2010, DOI: 10.1029/2009gl042143. [Google Scholar]
  • Deng, Y., and A.J. Ridley. Possible reasons for underestimating Joule heating in global models: E field variability, spatial resolution, and vertical velocity. J. Geophys. Res. [Space Phys.], 112(A), A09308, 2007, DOI: 10.1029/2006JA012006. [Google Scholar]
  • Deng, Y., Y. Huang, J. Lei, A.J. Ridley, R. Lopez, and J. Thayer. Energy input into the upper atmosphere associated with high-speed solar wind streams in 2005. J. Geophys. Res. Space Phys., 116, A05303, 2011, DOI: 10.1029/2010JA016201. [Google Scholar]
  • Emery, B.A., D.S. Evans, M.S. Greer, E. Holeman, K. Kadinsky-Cade, F.J. Rich, and W. Xu. The low energy auroral electron and ion hemispheric power after NOAA and DMSP intersatellite adjustments. NCAR Technical Note, NCAR/TN-470+STR, HAO/NCAR, 2006. [Google Scholar]
  • Fang, T.-W., R. Akmaev, T. Fuller-Rowell, F. Wu, N. Maruyama, and G. Millward. Longitudinal and day-to-day variability in the ionosphere from lower atmosphere tidal forcing. Geophys. Res. Lett., 40, 2523–2528, 2013, DOI: 10.1002/grl.50. [CrossRef] [Google Scholar]
  • Forbes, J.M., S.L. Bruinsma, X. Zhang, and J. Oberheide. Surface-exosphere coupling due to thermal tides. Geophys. Res. Lett., 36, L15812, 2009, DOI: 10.1029/2009GL03874. [CrossRef] [Google Scholar]
  • Fuller-Rowell, T.J., and D.S. Evans. Height-integrated Pedersen and Hall conductivity patterns inferred from the TIROS/NOAA satellite data. J. Geophys. Res. [Space Phys.], 92, 7606–7618, 1987, DOI: 10.1029/JA092iA07p07606. [Google Scholar]
  • Gonzalez, W.D., and B.T. Tsurutani. Criteria of interplanetary parameters causing intense magnetic storms (Dst less-than −100 nT). Planet. Space Sci., 35 (9), 1101–1109, 1987, DOI: 10.1016/0032-0633(87)90015-8. [Google Scholar]
  • Gonzalez, W.D., B.T. Tsurutani, and A.L.C. De Gonzalez. Interplanetary origin of geomagnetic storms. Space Sci. Rev., 88 (3–4), 529–562, 1999, DOI: 10.1023/a:1005160129098. [Google Scholar]
  • Gopalswamy, N., J.M. Davila, O.C. St. Cyr, E.C. Sittler, F. Auchère, et al. Earth-Affecting Solar Causes Observatory (EASCO): a potential international living with a star mission from Sun–Earth L5. J. Atmos. Sol. Terr. Phys., 73 (5–6), 658–663, 2011, DOI: 10.1016/j.jastp.2011.01.013. [Google Scholar]
  • Hagan, M.E., A. Maute, R.G. Roble, A.D. Richmond, T.J. Immel, and S.L. England. Connections between deep tropical clouds and the Earth’s ionosphere. Geophys. Res. Lett., 34, L20109, 2007, DOI: 10.1029/2007GL030142 . [CrossRef] [Google Scholar]
  • Hagan, M.E., K. Haeusler, G. Lu, J.M. Forbes, and X. Zhang. Upper thermospheric responses to forcing from above and below during 1–10 April 2010: results from an ensemble of numerical simulations. J. Geophys. Res. [Space Phys.], 120 (4), 3160–3174, 2015, DOI: 10.1002/2014ja020706. [CrossRef] [Google Scholar]
  • Häusler, K., M.E. Hagan, J.M. Forbes, X. Zhang, E. Doornbos, S. Bruinsma, and G. Lu. Intraannual variability of tides in the thermosphere from model simulations and in situ satellite observations. J. Geophys. Res. [Space Phys.], 120 (1), 751–765, 2015, DOI: 10.1002/2014JA020579. [CrossRef] [Google Scholar]
  • He, M., L. Liu, W. Wan, and Y. Wei. Strong evidence for couplings between the ionospheric wave-4 structure and atmospheric tides. Geophys. Res. Lett., 38, L14101, 2011, DOI: 10.1029/2011GL047855 . [CrossRef] [Google Scholar]
  • Howard, R.A., et al.. Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev., 136 (1), 67–115, 2008, DOI: 10.1007/s11214-008-9341-4. [NASA ADS] [CrossRef] [Google Scholar]
  • Huang, Y., A.D. Richmond, Y. Deng, and R. Roble. Height distribution of Joule heating and its influence on the thermosphere. J. Geophys. Res. [Space Phys.], 117, A08334, 2012, DOI: 10.1029/2012JA017885. [Google Scholar]
  • Huang, C.Y., Y.J. Su, E.K. Sutton, D.R. Weimer, and R.L. Davidson. Energy coupling during the August 2011 magnetic storm. J. Geophys. Res. [Space Phys.], 119 (2), 1219–1232, 2014, DOI: 10.1002/2013ja019297. [CrossRef] [Google Scholar]
  • Huang, C.Y.-Y., Y. Huang, Y.-J. Su, E.K. Sutton, M.R. Hairston, and W.R. Coley. Ionosphere-thermosphere (IT) response to solar wind forcing during magnetic storms. J. Space Weather Space Clim., 6, A4, 2016, DOI: 10.1051/swsc/2015041. [CrossRef] [EDP Sciences] [Google Scholar]
  • Immel, T.J., E. Sagawa, S.L. England, S.B. Henderson, M.E. Hagan, S.B. Mende, H.U. Frey, C.M. Swenson, and L.J. Paxton. The control of equatorial ionospheric morphology by atmospheric tides. Geophys. Res. Lett., 33 (15), L15108, 2006, DOI: 10.1029/2006GL026161. [Google Scholar]
  • Isavnin, A., A. Vourlidas, and E.K.J. Kilpua. Three-dimensional evolution of erupted flux ropes from the Sun (2–20 R ⊙) to 1 AU. Sol. Phys., 284 (May 1), 203–215, 2013, DOI: 10.1007/s11207-012-0214-3. [NASA ADS] [CrossRef] [Google Scholar]
  • Isavnin, A., A. Vourlidas, and E.K.J. Kilpua. Three-dimensional evolution of flux-rope CMEs and its relation to the local orientation of the heliospheric current sheet. Sol. Phys., 289 (6), 2141–2156, 2014, DOI: 10.1007/s11207-013-0468-4. [NASA ADS] [CrossRef] [Google Scholar]
  • Jin, H., Y. Miyoshi, H. Fujiwara, and H. Shinagawa. Electrodynamics of the formation of ionospheric wave number 4 longitudinal structure. J. Geophys. Res. [Space Phys.], 113, A09307, 2008, DOI: 10.1029/2008JA013301. [CrossRef] [Google Scholar]
  • Jones Jr., M., J.M. Forbes, M.E. Hagan, and A. Maute. Non-migrating tides in the ionosphere-thermosphere: in-situ versus tropospheric sources. J. Geophys. Res. [Space Phys.], 118, 2438–2451, 2013, DOI: 10.1002/jgra.50257. [CrossRef] [Google Scholar]
  • Kaiser, M.L., T.A. Kucera, J.M. Davila, O.C.S. Cyr, M. Guhathakurta, and E. Christian. The STEREO mission: an introduction. Space Sci. Rev., 136 (1), 5–16, 2008, DOI: 10.1007/s11214-007-9277-0. [NASA ADS] [CrossRef] [Google Scholar]
  • Kalnay, E. Atmospheric modeling, data assimilation and predictability, Cambridge University Press, NY, ISBN: 978-0521796293, 2002. [CrossRef] [Google Scholar]
  • Knipp, D., S. Eriksson, L. Kilcommons, G. Crowley, J. Lei, M. Hairston, and K. Drake. Extreme Poynting flux in the dayside thermosphere: examples and statistics. Geophys. Res. Lett., 38, L16102, 2011, DOI: 10.1029/1022GL048302. [CrossRef] [Google Scholar]
  • Kunkel, V., and J. Chen. Evolution of a coronal mass ejection and its magnetic field in interplanetary space. ApJ Lett., 715 (2), L80–L83, 2010, DOI: 10.1088/2041-8205/715/2/L80. [NASA ADS] [CrossRef] [Google Scholar]
  • Kwon, R.-Y., J. Zhang, and A. Vourlidas. Are halo-like solar coronal mass ejections merely a matter of geometric projection effects? ApJ Lett., 799 (2), L29 (5 pp), 2015, DOI: 10.1088/2041-8205/799/2/L29. [NASA ADS] [CrossRef] [Google Scholar]
  • Lario, D., and A. Karelitz. Influence of interplanetary coronal mass ejections on the peak intensity of solar energetic particle events. J. Geophys. Res. [Space Phys.], 119 (6), 4185–4209, 2014, DOI: 10.1002/2014JA019771. [CrossRef] [Google Scholar]
  • Lee, C.O., C.N. Arge, D. Odstrčil, G. Millward, V. Pizzo, J.M. Quinn, and C.J. Henney. Ensemble modeling of CME propagation. Sol. Phys., 285, 349–368, 2013, DOI: 10.1007/s11207-012-9980-1. [Google Scholar]
  • Liu, H.-L., W. Wang, A.D. Richmond, and R.G. Roble. Ionospheric variability due to planetary waves and tides for solar minimum conditions. J. Geophys. Res. [Space Phys.], 115, A00G01, 2010, DOI: 10.1029/2009JA015188. [Google Scholar]
  • Lu, G., M. Hagan, K. Häusler, E. Doornbos, S. Bruinsma, B.J. Anderson, and H. Korth. Global ionospheric and thermospheric response to the 5 April 2010 geomagnetic storm: an integrated data-model investigation. J. Geophys. Res. [Space Phys.], 119, 10358–10375, 2015, DOI: 10.1002/2014JA020555. [CrossRef] [Google Scholar]
  • Lugaz, N., W.B.I. Manchester, and T.I. Gombosi. Numerical simulation of the interaction of two coronal mass ejections from Sun to Earth. ApJ, 634 (1), 651–662, 2005, DOI: 10.1086/491782. [Google Scholar]
  • Lühr, H., M. Rother, K. Häusler, P. Alken, and S. Maus. The influence of nonmigrating tides on the longitudinal variation of the equatorial electrojet. J. Geophys. Res. [Space Phys.], 113, A08313, 2008, DOI: 10.1029/2008JA01. [Google Scholar]
  • Lynch, E., D. Kaufman, A.S. Sharma, E. Kalnay, and K. Ide. Brief Communication: breeding vectors in the phase space reconstructed from time series data. Nonlin. Proc. Geophys., 23 (3), 137–141, 2016, DOI: 10.5194/npg-23-137-2016. [CrossRef] [Google Scholar]
  • Mannucci, A.J. Charting a path toward improved space weather forecasting. Space Weather, 10, S07003, 2012, DOI: 10.1029/2012SW000819. [CrossRef] [Google Scholar]
  • Mannucci, A.J., B.T. Tsurutani, M.A. Abdu, W.D. Gonzalez, A. Komjathy, E. Echer, B.A. Iijima, G. Crowley, and D. Anderson. Superposed epoch analysis of the dayside ionospheric response to four intense geomagnetic storms. J. Geophys. Res. [Space Phys.], 113, A00A02, 2008, DOI: 10.1029/2007JA012732. [CrossRef] [Google Scholar]
  • Mannucci, A.J., B.T. Tsurutani, M.C. Kelley, B.A. Iijima, and A. Komjathy. Local time dependence of the prompt ionospheric response for the 7, 9, and 10 November 2004 superstorms. J. Geophys. Res. [Space Phys.], 114, A10308, 2009, DOI: 10.1029/2009JA014043. [CrossRef] [Google Scholar]
  • Mannucci, A.J., O.P. Verkhoglyadova, B.T. Tsurutani, X. Meng, X. Pi, et al. Medium-range thermosphere-ionosphere storm forecasts. Space Weather, 13 (3), 125–129, 2015a, DOI: 10.1002/2014sw001125. [CrossRef] [Google Scholar]
  • Mannucci, A.J., B.T. Tsurutani, O.P. Verkhoglyadova, and X. Meng. On scientific inference in geophysics and the use of numerical simulations for scientific investigations. Earth Space Sci., 2 (8), 359–367, 2015b, DOI: 10.1002/2015EA000108. [CrossRef] [Google Scholar]
  • Matsuo, T., and A.D. Richmond. Effects of high-latitude ionospheric electric field variability on global thermospheric Joule heating and mechanical energy transfer rate. J Geophys. Res. [Space Phys.], 113 (A7), A07309, 2008, DOI: 10.1029/2007ja012993. [CrossRef] [Google Scholar]
  • Maute, A., M.E. Hagan, A.D. Richmond, and R.G. Roble. TIME-GCM study of the ionospheric equatorial vertical drift changes during the 2006 Stratospheric Sudden Warming. J. Geophys. Res. [Space Phys.], 119, 1287–1305, 2014, DOI: 10.1002/2013JA019490. [CrossRef] [Google Scholar]
  • Maute, A., M.E. Hagan, V. Yudin, H.-L. Liu, and E. Yizengaw. Causes of the longitudinal differences in the equatorial vertical E × B drift during the 2013 SSW period as simulated by the TIME-GCM. J. Geophys. Res. [Space Phys.], 120, 5117–5136, 2015, DOI: 10.1002/2015JA021126. [CrossRef] [Google Scholar]
  • Mendillo, M. Storms in the ionosphere: patterns and processes for total electron content. Rev. Geophys., 44, RG4001, 2006, DOI: 10.1029/2005RG000193. [Google Scholar]
  • Mendillo, M., and J.A. Klobuchar. Total electron content: synthesis of past storm studies and needed future work. Radio Sci., 41, RS5S02, 2006, DOI: 10.1029/2005RS003394. [CrossRef] [Google Scholar]
  • Meng, X., A.J. Mannucci, O.P. Verkhoglyadova, and B.T. Tsurutani. On forecasting ionospheric total electron content responses to high-speed solar wind streams. J. Space Weather Space Clim., 6, A19, 2016, DOI: 10.1051/swsc/2016014. [CrossRef] [EDP Sciences] [Google Scholar]
  • Merkin, V.G., M.J. Owens, H.E. Spence, W.J. Hughes, and J.M. Quinn. Predicting magnetospheric dynamics with a coupled Sun-to-Earth model: challenges and first results. Space Weather, 5, S12001, 2007, DOI: 10.1029/2007sw000335. [CrossRef] [Google Scholar]
  • Millward, G., D. Biesecker, V. Pizzo, and C.A. de Koning. An operational software tool for the analysis of coronagraph images: determining CME parameters for input into the WSA-Enlil heliospheric model. Space Weather, 11, 57–68, 2013, DOI: 10.1002/swe.20024. [CrossRef] [Google Scholar]
  • Möstl, C., K. Amla, J.R. Hall, P.C. Liewer, E.M. De Jong, et al. Connecting speeds, directions and arrival times of 22 coronal mass ejections from the Sun to 1 AU. ApJ, 787 (2), 119, 2014, DOI: 10.1088/0004-637X/787/2/119. [Google Scholar]
  • Newell, P.T., T. Sotirelis, K. Liou, C.-I. Meng, and F.J. Rich. A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables. J. Geophys. Res. [Space Phys.], 112, A01206, 2007, DOI: 10.1029/2006JA012015. [Google Scholar]
  • Newell, P.T., T. Sotirelis, K. Liou, and F.J. Rich. Pairs of solar wind-magnetosphere coupling functions: combining a merging term with a viscous term works best. J. Geophys. Res. [Space Phys.], 113, A04218, 2008, DOI: 10.1029/2007JA012825. [Google Scholar]
  • Nieves-Chinchilla, T., R. Colaninno, A. Vourlidas, A. Szabo, R.P. Lepping, S.A. Boardsen, B.J. Anderson, and H. Korth. Remote and in situ observations of an unusual earth-directed coronal mass ejection from multiple viewpoints. J. Geophys. Res., 117, A06106, 2012, DOI: 10.1029/2011JA017243. [Google Scholar]
  • Oberheide, J., and J.M. Forbes. Tidal propagation of deep tropical cloud signatures into the thermosphere from TIMED observations. Geophys. Res. Lett., 35, L04816, 2008, DOI: 10.1029/2007GL032397. [Google Scholar]
  • Oberheide, J., J.M. Forbes, K. Häusler, Q. Wu, and S.L. Bruinsma. Tropospheric tides from 80 to 400 km: Propagation, interannual variability, and solar cycle effects. J. Geophys. Res., 114, D00I05, 2009, DOI: 10.1029/2009JD0. [CrossRef] [Google Scholar]
  • OFCM. “The National Space Weather Program Strategic Plan”, National Space Weather Program Council, Office of the Federal Coordinator for Meteorological Services and Supporting Research, Document FCM-P30-2010, Washington, DC, 2010 [Google Scholar]
  • Patsourakos, S., A. Vourlidas, and G. Stenborg. Direct evidence for a fast coronal mass ejection driven by the prior formation and subsequent destabilization of a magnetic flux rope. ApJ, 764, 125, 2013, DOI: 10.1088/0004-637X/764/2/125. [NASA ADS] [CrossRef] [Google Scholar]
  • Pedatella, N.M., M.E. Hagan, and A. Maute. The comparative importance of DE3, SE2, and SPW4 on the generation of wavenumber-4 longitude structures in the low-latitude ionosphere during September equinox. Geophys. Res. Lett., 39, L19108, 2012, DOI: 10.1029/2012GL053643. [Google Scholar]
  • Poomvises, W., J. Zhang, and O. Olmedo. Coronal mass ejection propagation and expansion in three-dimensional space in the heliosphere based on STEREO/SECCHI observations. ApJ Lett., 717, L159–L163, 2010, DOI: 10.1088/2041-8205/717/2/L159. [NASA ADS] [CrossRef] [Google Scholar]
  • Prölss, G.W., Ionospheric F-region storms. In: H., Volland, Editor. Handbook of Atmospheric Electrodynamics, vol. 2, CRC Press, Boca Raton, FL, 195–235, 1995. [Google Scholar]
  • Prölss, G.W., Ionospheric storms at mid-latitude: A short review. In: M. Paul KintnerJr., J. Anthea Coster, T. Fuller-Rowell, J. Anthony Mannucci, M. Mendillo, and R. Heelis, Editors. Midlatitude Ionospheric Dynamics and Disturbances, Geophys. Monogr. Ser. 181, AGU Geophysical Monograph Series, vol. 181, AGU, Washington, DC, 9–24, ISBN: 978-0-87590-446-7, 2008, DOI: 10.1029/181GM03. [CrossRef] [Google Scholar]
  • Richmond, A.D., and Y. Kamide. Mapping electrodynamic features of the high-latitude ionosphere from localized observations: technique. J. Geophys. Res. [Space Phys.], 93 (A6), 5741–5759, 1988, DOI: 10.1029/JA093iA06p05741. [Google Scholar]
  • Ridley, A.J., Y. Deng, and G. Tóth. The global ionosphere-thermosphere model. J. Atmos. Sol. Terr. Phys., 68, 839–864, 2006, DOI: 10.1016/j.jastp.2006.01.008. [CrossRef] [Google Scholar]
  • Rienecker, M.M., M.J. Suarez, R. Gelaro, R. Todling, J. Bacmeister, et al. MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Clim., 24 (14), 3624–3648, 2011, DOI: 10.1175/JCLI-D-11-00015.1. [CrossRef] [Google Scholar]
  • Rouillard, A.P., N.P. Savani, J.A. Davies, B. Lavraud, R.J. Forsyth, et al. A multispacecraft analysis of a small-scale transient entrained by solar wind streams. Sol. Phys, 256 (1), 307–326, 2009, DOI: 10.1007/s11207-009-9329-6. [Google Scholar]
  • Savani, N.P., A. Vourlidas, A. Szabo, M.L. Mays, I.G. Richardson, B.J. Thompson, A. Pulkkinen, R. Evans, and T. Nieves-Chinchilla. Predicting the magnetic vectors within coronal mass ejections arriving at Earth: 1. Initial architecture. Space Weather, 13 (6), 374–385, 2015, DOI: 10.1002/2015SW001171. [NASA ADS] [CrossRef] [Google Scholar]
  • Sheng, C., Y. Deng, X. Yue, and Y. Huang. Height-integrated Pedersen conductivity in both E and F regions from COSMIC observations. J. Atmos. Sol. Terr. Phys., 115–116C, 79–86, 2014, DOI: 10.1016/j.jastp.2013.12.013. [Google Scholar]
  • Siscoe, G. A culture of improving forecasts: lessons from Meteorology. Space Weather, 4, S01003, 2006, DOI: 10.1029/2005SW000178. [Google Scholar]
  • Siscoe, G., and S.C. Solomon. Aspects of data assimilation peculiar to space weather forecasting. Space Weather, 4 (4), S04002, 2006, DOI: 10.1029/2005SW000205. [Google Scholar]
  • Solomon, S.C., A.G. Burns, B.A. Emery, M.G. Mlynczak, L. Qian, W. Wang, D.R. Weimer, and M. Wiltberger. Modeling studies of the impact of high-speed streams and co-rotating interaction regions on the thermosphere-ionosphere. J. Geophys. Res. [Space Phys.], 117, A00L11, 2012, DOI: 10.1029/2011JA017417. [CrossRef] [Google Scholar]
  • Temmer, M., and N.V. Nitta. Interplanetary propagation behavior of the fast coronal mass ejection on 23 July 2012. Sol. Phys., 290 (3), 919–932, 2015, DOI: 10.1007/s11207-014-0642-3. [Google Scholar]
  • Tóth, G., D.L. De Zeeuw, T.I. Gombosi, W.B. Manchester, A.J. Ridley, I.V. Sokolov, and I.I. Roussev. Sun-to-thermosphere simulation of the 28–30 October 2003 storm with the space weather modeling framework. Space Weather, 5 (6), S06003, 2007, DOI: 10.1029/2006sw000272. [Google Scholar]
  • Tsurutani, B.T., W.D. Gonzalez, A.L.C. Gonzalez, F. Tang, J.K. Arballo, and M. Okada. Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle. J Geophys. Res. [Space. Phys.], 100 (A11), 21717–21734, 1995, DOI: 10.1029/95JA01476. [Google Scholar]
  • Verkhoglyadova, O., X. Meng, A.J. Mannucci, B.T. Tsurutani, L.A. Hunt, M.G. Mlynczak, R. Hajra, and B.A. Emery. Estimation of energy budget of ionosphere-thermosphere system during two CIR-HSS events: observations and modeling. J. Space Weather Space Clim., 6, A20–A22, 2016, DOI: 10.1051/swsc/2016013. [CrossRef] [EDP Sciences] [Google Scholar]
  • Vourlidas, A. Mission to the Sun-Earth L5 Lagrangian point: an optimal platform for space weather research. Space Weather, 13, 197–201, 2015, DOI: 10.1002/2015SW001173. [CrossRef] [Google Scholar]
  • Vourlidas, A., R. Colaninno, T. Nieves-Chinchilla, and G. Stenborg. The first observation of a rapidly rotating coronal mass ejection in the middle corona. ApJ 733 (2), L23, 2011, DOI: 10.1088/2041-8205/733/2/L23. [NASA ADS] [CrossRef] [Google Scholar]
  • Vourlidas, A., B.J. Lynch, R.A. Howard, and Y. Li. How many CMEs have flux ropes? Deciphering the signatures of shocks, flux ropes, and prominences in coronagraph observations of CMEs. Sol. Phys., 284, 179–201, 2013, DOI: 10.1007/s11207-012-0084-8. [Google Scholar]
  • Wan, W., J. Xiong, Z. Ren, L. Liu, M.L. Zhang, F. Ding, B. Ning, B. Zhao, and X. Yue. Correlation between the ionospheric WN4 signature and the upper atmospheric DE3 tide. J. Geophys. Res. [Space Phys.], 115, A11303, 2010, DOI: 10.1029/2010JA015527. [Google Scholar]
  • Wang, C., G. Rosen, B.T. Tsurutani, O.P. Verkhoglyadova, X. Meng, and A.J. Mannucci. Statistical characterization of ionosphere anomalies and their relationship to space weather events. J. Space Weather Space Clim., 6, A5, 2016, DOI: 10.1051/swsc/2015046. [CrossRef] [EDP Sciences] [Google Scholar]
  • Webb, D.F., D.A. Biesecker, N. Gopalswamy, O.C. St. Cyr, J.M. Davila, C.J. Eyles, B.J. Thompson, K.D.C. Simunac, and J.C. Johnston. Using STEREO-B as an L5 Space Weather Pathfinder Mission. Space Res. Today, 178, 10–16, 2010, DOI: 10.1016/ [CrossRef] [Google Scholar]
  • Zhang, Y., and L.J. Paxton. An empirical Kp-dependent global auroral model based on TIMED/GUVI FUV data. J. Atmos. Sol. Terr. Phys., 70 (8–9), 1231–1242, 2008, DOI: 10.1016/j.jastp.2008.03.008. [Google Scholar]
  • Zhang, J., C. Xin, and Ming-de Ding. Observation of an evolving magnetic flux rope before and during a solar eruption. Nat. Comm., 3, 747, 2012, DOI: 10.1038/ncomms1753. [Google Scholar]
  • Zhao, X., and M. Dryer. Current status of CME/shock arrival time prediction. Space Weather, 12 (7), 448–469, 2014, DOI: 10.1002/2014SW001060. [CrossRef] [Google Scholar]
  • Zheng, Y., P. Macneice, D. Odstrcil, M.L. Mays, L. Rastaetter, et al. Forecasting propagation and evolution of CMEs in an operational setting: What has been learned. Space Weather, 11 (10), 557–574, 2013, DOI: 10.1002/swe.20096. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.