Open Access
J. Space Weather Space Clim.
Volume 6, 2016
Article Number A42
Number of page(s) 29
Published online 21 December 2016
  • Agueda, N., K.-L. Klein, N. Vilmer, R. Rodríguez-Gasén, O. Malandraki, et al. Release timescales of solar energetic particles in the low corona. A&A, 570, A5, 2014, DOI: 10.1051/0004-6361/201423549. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Anastasiadis, A. Acceleration of solar energetic particles: the case of solar flares. J. Atmos. Sol. Terr. Phys., 64 (5), 481–488, 2002, DOI: 10.1051/0004-6361/201423549. [Google Scholar]
  • Aschwanden, M.J. Particle acceleration and kinematics in solar flares – a synthesis of recent observations and theoretical concepts (Invited Review). Space Sci. Rev., 101(1–2), 1–227, 2002, DOI: 10.1023/A:1019712124366. [NASA ADS] [CrossRef] [Google Scholar]
  • Balch, C.C. SEC proton prediction model: verification and analysis. Radiat. Meas., 30 (3), 231–250, 1999, DOI: 10.1016/S1350-4487(99)00052-9. [Google Scholar]
  • Balch, C.C. Updated verification of the Space Weather Prediction Center’s solar energetic particle prediction model. Space Weather, 6, S01001, 1, 2008, DOI: 10.1029/2007SW000337. [CrossRef] [Google Scholar]
  • Belov, A., H. Garcia, V. Kurt, H. Mavromichalaki, and M. Gerontidou. Proton enhancements and their relation to the X-ray flares during the three last solar cycles. Sol. Phys., 229 (1), 135–159, 2005, DOI: 10.1007/s11207-005-4721-3. [Google Scholar]
  • Benz, A.O. Flare observations. Living Rev. Sol. Phys., 5 (1), 1–64, 2008, DOI: 10.12942/lrsp-2008-1. [Google Scholar]
  • Bougeret, J.-L., M. Kaiser, P. Kellogg, R. Manning, K. Goetz, et al. Waves: The radio and plasma wave investigation on the Wind spacecraft. Space Sci. Rev., 71 (1–4), 231–263, 1995, DOI: 10.1007/BF00751331. [NASA ADS] [CrossRef] [Google Scholar]
  • Bougeret, J.-L., K. Goetz, M. Kaiser, S. Bale, P. Kellogg, et al. S/WAVES: The radio and plasma wave investigation on the STEREO mission. Space Sci. Rev., 136 (1–4), 487–528, 2008, DOI: 10.1007/s11214-007-9298-8. [NASA ADS] [CrossRef] [Google Scholar]
  • Brueckner, G., R. Howard, M. Koomen, C. Korendyke, D. Michels, et al. The large angle spectroscopic coronagraph (LASCO). Sol. Phys., 162 (1–2), 357–402, 1995, DOI: 10.1007/BF00733434. [NASA ADS] [CrossRef] [Google Scholar]
  • Cane, H., and D. Lario. An introduction to CMEs and energetic particles. Space Sci. Rev., 123 (1–3), 45–56, 2006, DOI: 10.1007/s11214-006-9011-3. [Google Scholar]
  • Cane, H.V., W. Erickson, and N. Prestage. Solar flares, type III radio bursts, coronal mass ejections, and energetic particles. J. Geophys. Res. [Space Phys.], 107 (A10), SSH–14, 2002, DOI: 10.1029/2001JA000320. [Google Scholar]
  • Cane, H.V., I.G. Richardson, and T.T. von Rosenvinge. A study of solar energetic particle events of 1997–2006: their composition and associations. J. Geophys. Res., 115 (A08101), 1–18, 2010. [Google Scholar]
  • Cliver, E. Solar flare gamma-ray emission and energetic particles in space. In: High energy solar physics, vol. 374, AIP Publishing, Melville, New York, pp. 45–60, 1996, DOI: 10.1063/1.50980. [NASA ADS] [CrossRef] [Google Scholar]
  • Colaninno, R.C., and A. Vourlidas. First determination of the true mass of coronal mass ejections: a novel approach to using the two STEREO viewpoints. Astrophys. J., 698 (1), 852, 2009, URL [Google Scholar]
  • Crosby, N., D. Heynderickx, P. Jiggens, A. Aran, and B. Sanahuja. SEPEM: a tool for statistical modelling the solar energetic particle environment. Space Weather, 13, 406–426, 2015, DOI: 10.1002/2013SW001008. [CrossRef] [Google Scholar]
  • Dennis, B.R., and D.M. Zarro. The Neupert effect: what can it tell us about the impulsive and gradual phases of solar flares? Sol. Phys., 146 (1), 177–190, 1993, DOI: 10.1007/BF00662178. [NASA ADS] [CrossRef] [Google Scholar]
  • Dierckxsens, M., K. Tziotziou, S. Dalla, I. Patsou, M. Marsh, N. Crosby, O. Malandraki, and G. Tsiropoula. Relationship between solar energetic particles and properties of flares and CMEs: statistical analysis of solar cycle 23 events. Sol. Phys., 290 (3), 841–874, 2015, DOI: 10.1007/s11207-014-0641-4. [NASA ADS] [CrossRef] [Google Scholar]
  • Dougherty, B.L., H. Zirin, and K. Hsu. Statistical correlations between solar microwave bursts and coronal mass ejections. Astrophys. J., 577 (1), 457, 2002, DOI: 10.1086/342162. [Google Scholar]
  • Dresing, N., R. Gómez-Herrero, A. Klassen, B. Heber, Y. Kartavykh, and W. Dröge. The large longitudinal spread of solar energetic particles during the 17 January 2010 solar event. Sol. Phys., 281 (1), 281–300, 2012, DOI: 10.1007/s11207-012-0049-y. [Google Scholar]
  • Dröge, W., Y. Kartavykh, N. Dresing, B. Heber, and A. Klassen. Wide longitudinal distribution of interplanetary electrons following the 7 February 2010 solar event: observations and transport modeling. J. Geophys. Res. [Space Phys.], 119 (8), 6074–6094, 2014, DOI: 10.1002/2014JA019933. [Google Scholar]
  • Fenton, N., and M. Neil. Risk assessment and decision analysis with Bayesian networks, CRC Press/Taylor & Francis Group, Boca Raton/London/New York, 2012. [Google Scholar]
  • Fisher, R. On the probable error of a coefficient of correlation deduced from a small sample. Metron, 1, 3–32, 1921. [Google Scholar]
  • Garcia, H.A. Forecasting methods for occurrence and magnitude of proton storms with solar hard X rays. Space Weather, 2, S06003, 1–10, 2004a, DOI: 10.1029/2003SW000035. [CrossRef] [Google Scholar]
  • Garcia, H.A. Forecasting methods for occurrence and magnitude of proton storms with solar soft X rays. Space Weather, 2, S02002, 1–10, 2004b, DOI: 10.1029/2003SW000001. [CrossRef] [Google Scholar]
  • Gardini, A., M. Laurenza, and M. Storini. SEP events and multi-spacecraft observations: constraints on theory. Adv. Space Res., 47 (12), 2127–2139, 2011, DOI: 10.1016/j.asr.2011.01.025. [CrossRef] [Google Scholar]
  • Georgoulis, M.K. Magnetic complexity in eruptive solar active regions and associated eruption parameters. Geophys. Res. Lett., 35, L06S02, 1–5, 2008, DOI: 10.1029/2007GL032040. [Google Scholar]
  • Gold, R., S. Krimigis, S. Hawkins III, D. Haggerty, D. Lohr, E. Fiore, T. Armstrong, G. Holland, and L. Lanzerotti. Electron, proton, and alpha monitor on the advanced composition explorer spacecraft. Space Sci. Rev., 86 (1–4), 541–562, 1998, DOI: 10.1023/A:1005088115759. [Google Scholar]
  • Gopalswamy, N. Energetic particle and other space weather events of solar cycle 24. AIP Conference Proceedings, 1500, 14–19, 2012, DOI: 10.1063/1.4768738. [CrossRef] [Google Scholar]
  • Gopalswamy, N., S. Yashiro, G. Michałek, M. Kaiser,R. Howard, D. Reames, R. Leske, and T. Von Rosenvinge. Interacting coronal mass ejections and solar energetic particles. Astrophys. J. Lett., 572 (1), L103, 2002, DOI: 10.1086/341601. [Google Scholar]
  • Gopalswamy, N., S. Yashiro, A. Lara, M. Kaiser, B.J. Thompson, P.T. Gallagher, and R.A. Howard. Large solar energetic particle events of cycle 23: a global view. Geophys. Res. Lett., 30 (12), 8015–8018, 2003, DOI: 10.1029/2002GL016435. [Google Scholar]
  • Gopalswamy, N., S. Yashiro, S. Krucker, G. Stenborg, and R.A. Howard. Intensity variation of large solar energetic particle events associated with coronal mass ejections. J. Geophys. Res. [Space Phys.], 109, A12105, 1–18, 2004, DOI: 10.1029/2004JA010602. [Google Scholar]
  • Gopalswamy, N., S. Yashiro, G. Michalek, G. Stenborg, A. Vourlidas, S. Freeland, and R. Howard. The SOHO/LASCO CME catalog. Earth Moon Planet, 104, 295–313, 2009, DOI: 10.1007/s11038-008-9282-7. [NASA ADS] [CrossRef] [Google Scholar]
  • Kahler, S.W. The role of the big flare syndrome in correlations of solar energetic proton fluxes and associated microwave burst parameters. J. Geophys. Res. [Space Phys.], 87 (A5), 3439–3448, 1982, DOI: 10.1029/JA087iA05p03439. [Google Scholar]
  • Kahler, S.W. The correlation between solar energetic particle peak intensities and speeds of coronal mass ejections: effects of ambient particle intensities and energy spectra. J. Geophys. Res. [Space Phys.], 106 (A10), 20947–20955, 2001, DOI: 10.1029/2000JA002231. [NASA ADS] [CrossRef] [Google Scholar]
  • Kahler, S.W. Characteristic times of gradual solar energetic particle events and their dependence on associated coronal mass ejection properties. Astrophys. J., 628 (2), 1014, 2005, DOI: 10.1086/431194. [CrossRef] [Google Scholar]
  • Kahler, S.W., and A. Vourlidas. A comparison of the intensities and energies of gradual solar energetic particle events with the dynamical properties of associated coronal mass ejections. Astrophys. J., 769 (2), 143, 2013, DOI: 10.1088/0004-637X/769/2/143. [Google Scholar]
  • Kahler, S.W., and A. Vourlidas. Do interacting coronal mass ejections play a role in solar energetic particle events? Astrophys. J., 784 (1), 47, 2014, DOI: 10.1088/0004-637X/784/1/47. [Google Scholar]
  • Kallenrode, M.-B. Current views on impulsive and gradual solar energetic particle events. J. Phys. G: Nucl. Part. Phys., 29 (5), 965, 2003, DOI: 10.1088/0954-3899/29/5/316. [NASA ADS] [CrossRef] [Google Scholar]
  • Kallenrode, M.-B., E. Cliver, and G. Wibberenz. Composition and azimuthal spread of solar energetic particles from impulsive and gradual flares. Astrophys. J., 391, 370–379, 1992. [Google Scholar]
  • Klein, K.-L., and A. Posner. The onset of solar energetic particle events: prompt release of deka-MeV protons and associated coronal activity. A&A, 438 (3), 1029–1042, 2005, DOI:10.1051/0004-6361:20042607. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Klein, K.-L., S. Krucker, G. Trottet, and S. Hoang. Coronal phenomena at the release of solar energetic electron events. A&A, 431 (3), 1047–1060, 2005, DOI: 10.1051/0004-6361:20041258. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Klein, K.-L., G. Trottet, and A. Klassen. Energetic particle acceleration and propagation in strong CME-less flares. Sol. Phys., 263 (1-2), 185–208, 2010, DOI: 10.1007/s11207-010-9540-5. [Google Scholar]
  • Klein, K.-L., G. Trottet, S. Samwel, and O. Malandraki. Particle acceleration and propagation in strong flares without major solar energetic particle events. Sol. Phys., 269 (2), 309–333, 2011, DOI:10.1007/s11207-011-9710-0. [CrossRef] [Google Scholar]
  • Kocharov, L., and J. Torsti. Hybrid solar energetic particle events observed on board SOHO. Sol. Phys., 207 (1), 149–157, 2002, DOI: 10.1023/A:1015540311183. [Google Scholar]
  • Kouloumvakos, A., A. Nindos, E. Valtonen, C.E. Alissandrakis, O. Malandraki, P. Tsitsipis, A. Kontogeorgos, X. Moussas, and A. Hillaris. Properties of solar energetic particle events inferred from their associated radio emission. A&A, 580, A80, 2015, DOI: 10.1051/0004-6361/201424397. [CrossRef] [EDP Sciences] [Google Scholar]
  • Kurt, V., A. Belov, H. Mavromichalaki, and M. Gerontidou. Statistical analysis of solar proton events. Ann. Geophys., 22 (6), 2255–2271, 2004, DOI: 10.5194/angeo-22-2255-2004. [Google Scholar]
  • Lario, D., A. Aran, R. Gómez-Herrero, N. Dresing, B. Heber, G. Ho, R. Decker, and E. Roelof. Longitudinal and radial dependence of solar energetic particle peak intensities: STEREO, ACE, SOHO, GOES, and MESSENGER observations. Astrophys. J., 767 (1), 41, 2013, DOI: 10.1088/0004-637X/767/1/41. [Google Scholar]
  • Lario, D., N. Raouafi, R.-Y. Kwon, J. Zhang, R. Gómez-Herrero, N. Dresing, and P. Riley. The solar energetic particle event on 2013 April 11: an investigation of its solar origin and longitudinal spread. Astrophys. J., 797 (1), 8, 2014, DOI: 10.1088/0004-637X/797/1/8. [Google Scholar]
  • Lario, D., R.-Y. Kwon, A. Vourlidas, N. Raouafi, and D. Haggerty. Longitudinal properties of a widespread solar energetic particle event on 2014 February 25: evolution of the associated CME shock. Astrophys. J., 819 (1), 72, 2016, DOI: 10.3847/0004-637X/819/1/72. [Google Scholar]
  • Laurenza, M., E. Cliver, J. Hewitt, M. Storini, A. Ling,C. Balch, and M. Kaiser. A technique for shortterm warning of solar energetic particle events based on flare location, flare size, and evidence of particle escape. Space Weather, 7 (4), 2009, DOI: 10.1029/2007SW000379 [Google Scholar]
  • Lintunen, J., and R. Vainio. Solar energetic particle event onset as analyzed from simulated data. A&A, 420 (1), 343–350, 2004, DOI: 10.1051/0004-6361:20034247. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Mason, G., R. Gold, S. Krimigis, J. Mazur, G. Andrews, et al. The ultra-low-energy isotope spectrometer (ULEIS) for the ACE spacecraft. In: The advanced composition explorer mission, Springer Science+Business Media B.V., Dordrecht, Netherlands, pp. 409–448, 1998, DOI: 10.1007/978-94-011-4762-0_16. [CrossRef] [Google Scholar]
  • Maunder, E.W. Note on the distribution of sun-spots in heliographic latitude, 1874–1902. Mon. Not. R. Astron. Soc., 64, 747–761, 1904. [Google Scholar]
  • McComas, D., S. Bame, P. Barker, W. Feldman, J. Phillips, P. Riley, and J. Griffee. Solar wind electron proton alpha monitor (SWEPAM) for the Advanced Composition Explorer. In: The advanced composition explorer mission, Springer Science+Business Media B.V., Dordrecht, Netherlands, 563–612, 1998, DOI: 10.1007/978-94-011-4762-0_20. [Google Scholar]
  • Mewaldt, R., C. Cohen, and G. Mason. The source material for large solar energetic particle events. In:N. Gopalswamy, R. Mewaldt, and J. Torsti, Editors. Solar Eruptions and Energetic Particles, Wiley Online Library, 115–125, 2006, DOI: 10.1029/165GM12. [CrossRef] [Google Scholar]
  • Neupert, W.M. Comparison of solar X-ray line emission with microwave emission during flares. Astrophys. J., 153, L59, 1968. [Google Scholar]
  • Nolte, J., and E. Roelof. Large-scale structure of the interplanetary medium. Sol. Phys., 33 (2), 483–504, 1973, DOI: 10.1007/BF00152435. [Google Scholar]
  • Núñez, M. Predicting solar energetic proton events (E > 10 MeV). Space Weather, 9, S07003, 1–28, 2011, DOI: 10.1029/2010SW000640. [Google Scholar]
  • Onsager, T., R. Grubb, J. Kunches, L. Matheson, D. Speich, R.W. Zwickl, and H. Sauer. Operational uses of the GOES energetic particle detectors. In:SPIE’s 1996 International Symposium on Optical Science, Engineering, and Instrumentation, International Society for Optics and Photonics, Bellingham, Washington, pp. 281–290, 1996, DOI: 10.1117/12.254075. [Google Scholar]
  • Owens, M., and P. Cargill. Predictions of the arrival time of Coronal Mass Ejections at 1AU: an analysis of the causes of errors. Ann. Geophys., 22 (2), 661–671, 2004, DOI: 10.5194/angeo-22-661-2004. [CrossRef] [Google Scholar]
  • Papaioannou, A., O. Malandraki, N. Dresing, B. Heber, and K.-L. Klein. SEPServer catalogues of solar energetic particle events at 1 AU based on STEREO recordings: 2007–2012. A&A, 569, A96, 2014a, DOI: 10.1051/0004-6361/201323336. [CrossRef] [EDP Sciences] [Google Scholar]
  • Papaioannou, A., G. Souvatzoglou, P. Paschalis, M. Gerontidou, and H. Mavromichalaki. The first ground-level enhancement of solar cycle 24 on 17 May 2012 and its real-time detection. Sol. Phys., 289 (1), 423–436, 2014b, DOI: 10.1007/s11207-013-0336-2. [Google Scholar]
  • Papaioannou, A., A. Anastasiadis, I. Sandberg, M. Georgoulis, G. Tsiropoula, K. Tziotziou, P. Jiggens, and A. Hilgers. A novel forecasting system for solar particle events and flares (FORSPEF). J. Phys: Conf. Ser., 632 (1), 012075, 2015, DOI: 10.1088/1742-6596/632/1/012075. [Google Scholar]
  • Park, J., Y.-J. Moon, D. Lee, and S. Youn. Dependence of solar proton events on their associated activities: Flare parameters. J. Geophys. Res. [Space Phys.], 115, A10105, 1–6, 2010, DOI: 10.1029/2010JA015330. [Google Scholar]
  • Park, J., Y.-J. Moon, and N. Gopalswamy. Dependence of solar proton events on their associated activities: coronal mass ejection parameters. J. Geophys. Res. [Space Phys.], 117, A08108, 1–7, 2012, DOI: 10.1029/2011JA017477. [Google Scholar]
  • Parker, E. Dynamical theory of the solar wind. Space Sci. Rev., 4 (5–6), 666–708, 1965, DOI: 10.1007/BF00216273. [NASA ADS] [CrossRef] [Google Scholar]
  • Pick, M., and N. Vilmer. Sixty-five years of solar radioastronomy: flares, coronal mass ejections and Sun – Earth connection. Astron. Astrophys. Rev., 16 (1), 1–153, 2008, DOI: 10.1007/s00159-008-0013-x. [CrossRef] [Google Scholar]
  • Posner, A. Up to 1-hour forecasting of radiation hazards from solar energetic ion events with relativistic electrons. Space Weather, 5, S05001, 1–28, 2007, DOI: 10.1029/2006SW000268. [NASA ADS] [CrossRef] [Google Scholar]
  • Reames, D. Coronal abundances determined from energetic particles. Adv. Space Res., 15 (7), 41–51, 1995, DOI: 10.1016/0273-1177(94)00018-V. [Google Scholar]
  • Reames, D.V. Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev., 90 (3–4), 413–491, 1999, DOI: 10.1023/A:1005105831781. [Google Scholar]
  • Reames, D.V. Magnetic topology of impulsive and gradual solar energetic particle events. Astrophys. J. Lett., 571 (1), L63, 2002, DOI: 10.1086/341149. [Google Scholar]
  • Reames, D.V. The two sources of solar energetic particles. Space Sci. Rev., 175 (1–4), 53–92, 2013, DOI: 10.1007/s11214-013-9958-9. [NASA ADS] [CrossRef] [Google Scholar]
  • Reames, D.V. What are the sources of solar energetic particles? Element abundances and source plasma temperatures. Space Sci. Rev., 194 (1–4), 303–327, 2015, DOI: 10.1007/s11214-015-0210-7. [Google Scholar]
  • Reid, H.A.S., and H. Ratcliffe. A review of solar type III radio bursts. Res. Astron. Astrophys., 14 (7), 773, 2014, DOI: 10.1088/1674-4527/14/7/003. [NASA ADS] [CrossRef] [Google Scholar]
  • Richardson, I., T. von Rosenvinge, H. Cane, E. Christian, C. Cohen, et al. >25 MeV proton events observed by the high energy telescopes on the STEREO A and B spacecraft and/or at Earth during the first ≈ seven years of the STEREO Mission. Sol. Phys., 289 (8), 3059–3107, 2014, DOI: 10.1007/s11207-014-0524-8. [Google Scholar]
  • Rodriguez, J., J. Krosschell, and J. Green. Intercalibration of GOES 8–15 solar proton detectors. Space Weather, 12 (1), 92–109, 2014, DOI: 10.1002/2013SW000996. [CrossRef] [Google Scholar]
  • Rotter, T., A. Veronig, M. Temmer, and B. Vršnak. Real-time solar wind prediction based on SDO/AIA coronal hole data. Sol. Phys., 290 (5), 1355–1370, 2015, DOI: 10.1007/s11207-015-0680-5. [Google Scholar]
  • Rouillard, A., N. Sheeley, A. Tylka, A. Vourlidas, C. Ng, et al. The longitudinal properties of a solar energetic particle event investigated using modern solar imaging. Astrophys. J., 752 (1), 44, 2012, DOI: 10.1088/0004-637X/752/1/44. [Google Scholar]
  • Sáiz, A., P. Evenson, D. Ruffolo, and J.W. Bieber. On the estimation of solar energetic particle injection timing from onset times near Earth. Astrophys. J., 626 (2), 1131, 2005, DOI: 10.1086/430293. [Google Scholar]
  • Sandberg, I., P. Jiggens, D. Heynderickx, and I. Daglis. Cross calibration of NOAA GOES solar proton detectors using corrected NASA IMP-8/GME data. Geophys. Res. Lett., 41 (13), 4435–4441, 2014, DOI: 10.1002/2014GL060469. [Google Scholar]
  • Sheeley, N., J. Walters, Y.-M. Wang, and R. Howard. Continuous tracking of coronal outflows: two kinds of coronal mass ejections. J. Geophys. Res. [Space Phys.], 104 (A11), 24739–24767, 1999, DOI: 10.1029/1999JA900308. [Google Scholar]
  • Shen, D., and Z. Lu. Computation of correlation coefficient and its confidence interval in SAS. SUGI: Paper 170-31, SUGI 31 Proceedings, March 26–29,San Francisco, CA, 2006. [Google Scholar]
  • Smart, D., and M. Shea. PPS-87: a new event oriented solar proton prediction model. Adv. Space Res., 9 (10), 281–284, 1989, DOI: 10.1016/0273-1177(89)90450-X. [Google Scholar]
  • Smart, D., M. Shea, H.E. Spence, and L. Kepko. Two groups of extremely large > 30 MeV solar proton fluence events. Adv. Space Res., 37 (9), 1734–1740, 2006, DOI: 10.1016/j.asr.2005.09.008. [NASA ADS] [CrossRef] [Google Scholar]
  • Stone, E., A. Frandsen, R. Mewaldt, E. Christian, D. Margolies, J. Ormes, and F. Snow. The advanced composition explorer, Springer Science+Business Media B.V., Dordrecht, Netherlands, pp. 1–22, 1998a, DOI: 10.1007/978-94-011-4762-01. [CrossRef] [Google Scholar]
  • Stone, E.C., C. Cohen, W. Cook, A. Cummings, and B. Gauld. The solar isotope spectrometer for the advanced composition explorer. In: The advanced composition explorer mission, Springer Science+Business Media B.V., Dordrecht, Netherlands, pp. 357–408, 1998b, DOI: 10.1007/978-94-011-4762-015. [CrossRef] [Google Scholar]
  • Trottet, G., S. Samwel, K.-L. Klein, T.D. de Wit, and R. Miteva. Statistical evidence for contributions of flares and coronal mass ejections to major solar energetic particle events. Sol. Phys., 290 (3), 819–839, 2015. [CrossRef] [Google Scholar]
  • Unzicker, A., and R.F. Donnelly. Calibration of X-ray ion chambers for the Space Environment Monitoring System. Technical report COM-75-10667. In: National Oceanic and Atmospheric Administration, Boulder, Colo. (USA). Space Environment Lab, 1974. [Google Scholar]
  • Vainio, R., N. Agueda, A. Aran, and D. Lario. Modeling of solar energetic particles in interplanetary space. In: J. Lilensten, Editor. Space weather: research towards applications in Europe, Springer, Dordrecht, The Netherlands, 27–37, ISBN: 978-1-4020-5446-4, 2007, DOI: 10.1007/1-4020-5446-74. [Google Scholar]
  • Vainio, R., L. Desorgher, D. Heynderickx, M. Storini, E. Flückiger, et al. Dynamics of the Earths particle radiation environment. Space Sci. Rev., 147 (3–4), 187–231, 2009, DOI: 10.1007/s11214-009-9496-7. [Google Scholar]
  • Vainio, R., E. Valtonen, B. Heber, O.E. Malandraki, A. Papaioannou, et al. The first SEPServer event catalogue ~68-MeV solar proton events observed at 1 AU in 1996–2010. J. Space Weather Space Clim., 3, A12, 2013, DOI: 10.1051/swsc/2013030. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Vršnak, B., D. Ruždjak, D. Sudar, and N. Gopalswamy. Kinematics of coronal mass ejections between 2 and 30 solar radii. A&A, 423 (2), 717–728, 2004, DOI: 10.1051/0004-6361:20047169. [Google Scholar]
  • Vršnak, B., D. Sudar, and D. Ruždjak. The CME-flare relationship: are there really two types of CMEs? A&A, 435 (3), 1149–1157, 2005, DOI: 10.1051/0004-6361:20042166. [Google Scholar]
  • Wiedenbeck, M., G. Mason, C. Cohen, N. Nitta, R. Gómez-Herrero, and D. Haggerty. Observations of solar energetic particles from 3He-rich events over a wide range of heliographic longitude. Astrophys. J., 762 (1), 54, 2012, DOI: 10.1088/0004-637X/762/1/54. [Google Scholar]
  • Youssef, M. On the relation between the CMEs and the solar flares. NRIAG Journal of Astronomy and Geophysics, 1, 172–178, 2012, DOI: 10.1016/j.nrjag.2012.12.014. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.