Open Access
J. Space Weather Space Clim.
Volume 6, 2016
Article Number A41
Number of page(s) 10
Published online 21 December 2016
  • Allen, C.W. Relation between magnetic storms and solar activity. Mon. Not. R. Astron. Soc., 104, 13–21, 1944. [CrossRef] [Google Scholar]
  • Barnard, L., C. Scott, M. Owens, M. Lockwood, K. Tucker-Hood, et al. The solar stormwatch CME catalogue: results from the first space weather citizen science project. Space Weather, 12, 657–674, 2014, DOI: 10.1002/2014SW001119. [CrossRef] [Google Scholar]
  • Boursier, Y., P. Lamy, and A. Llebaria. Three-dimensional kinematics of coronal mass ejections from STEREO/SECCHICOR2 observations in 2007–2008. Sol. Phys., 256, 131–147, 2009. [CrossRef] [Google Scholar]
  • Brueckner, G.E. The behavior of the outer solar corona (3 Rʘ to 10 Rʘ) during a large solar flare observed from OSO-7 in white light. In: G. Newkirk, Editor. Coronal Disturbances, IAU, D. Reidel Publishing Company, Dordrecht, Holland, p. 333, 1974. [CrossRef] [Google Scholar]
  • Burlaga, L.F., and R.P. Lepping. The causes of recurrent geomagnetic storms. Planet. Space Sci., 25, 1151–1160, 1977, DOI: 10.1016/0032-0633(77)90090-3. [NASA ADS] [CrossRef] [Google Scholar]
  • Byrne, J.P., P.T. Gallagher, R.T.J. McAteer, and C.A. Young. The kinematics of coronal mass ejections using multiscale methods. A&A, 495, 325–334, 2009, DOI: 10.1051/0004-6361:200809811. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Byrne, J.P., S.A. Maloney, R.T.J. McAteer, J.M. Refojo, and P.T. Gallagher. Propagation of an Earth-directed coronal mass ejection in three dimensions. Nat. Commun., 1, 74, 2010, DOI: 10.1038/ncomms1077. [Google Scholar]
  • Byrne, J.P., H. Morgan, S.R. Habbal, and P.T. Gallagher. Automatic detection and tracking of coronal mass ejections. II. Multiscale filtering of coronagraph images. Astrophys. J., 752, 145, 2012, DOI: 10.1088/0004-637X/752/2/145. [Google Scholar]
  • Byrne, J.P. Investigating the kinematics of coronal mass ejections with the automated CORIMP catalog. J. Space Weather Space Clim., 5, A19, 2015, DOI: 10.1051/swsc/2015020. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Colaninno, R., and A. Vourlidas. First determination of the true mass of coronal mass ejections: a novel approach to using the two STEREO viewpoints. Astrophys. J., 698, 852–858, 2009. [Google Scholar]
  • Crooker, N.U., and A.H. McAllister. Transients associated with recurrent storms. J. Geophys. Res., 102 (A7), 14041–14047, 1997, DOI: 10.1029/96JA03431. [CrossRef] [Google Scholar]
  • de Koning, C.A., V.J. Pizzo, and D.A. Biesecker. Geometric localization of CMEs in 3D space using STEREO beacon data: first results. Sol. Phys., 256, 167–181, 2009. [Google Scholar]
  • de Koning, C.A., and V.J. Pizzo. Polarimetric localization: a new tool for calculating the CME speed and direction of propagation in near‐real time. Space Weather, 9, S03001, 2011, DOI: 10.1029/2010SW000595. [Google Scholar]
  • Eyles, C.J., R.A. Harrison, C.J. Davis, N.R. Waltham, B.M. Shaughnessy, et al. The heliospheric imagers onboard the STEREO mission. Sol. Phys., 254, 387–445, 2009, DOI: 10.1007/s11207-008-9299-0. [NASA ADS] [CrossRef] [Google Scholar]
  • Gallagher, P.A., C.A. Young, J.P. Byrne, and R.T.J. McAteer. Coronal mass ejection detection using wavelets, curvelets and ridgelets: applications for space weather monitoring. Adv. Space Res., 47, 2118–2126, 2011. [NASA ADS] [CrossRef] [Google Scholar]
  • Gosling, J.T., S.J. Bame, D.J. McComas, and J.L. Phillips. Coronal mass ejections and large geomagnetic storms. Geophys. Res. Lett., 17, 901–904, 1990. [NASA ADS] [CrossRef] [Google Scholar]
  • Graham, S.J., T.M. Fisher, V. Swisher, and C.A. Gruber. Severe space weather events – understanding societal and economic impacts – a workshop report, National Research Council, Division on Engineering and Physical Sciences, Space Studies Board, Committee on the Societal and Economic Impacts of Severe Space Weather Events, National Academies Press, Washington, DC, USA, ISBN: 0-309-12769-6, 2008. [Google Scholar]
  • Harrison, R.A., C.J. Davis, C.J. Eyles, D. Bewsher, S.R. Crothers, et al. First imaging of coronal mass ejections in the heliosphere viewed from outside the Sun-Earth line. Sol. Phys., 247, 171–193, 2007, DOI: 10.1007/s11207-007-9083-6. [CrossRef] [Google Scholar]
  • Howard, R.A., J.D. Moses, A. Vourlidas, J.S. Newmark, D.G. Socker, et al. Sun Earth Connection and Heliospheric Investigation (SECCHI). Space Sci. Rev., 136, 67–115, 2008, DOI: 10.1007/s11214-008-9341-4. [NASA ADS] [CrossRef] [Google Scholar]
  • Howard, T.A., and S.J. Tappin. Three-dimensional reconstruction of two solar coronal mass ejections using the STEREO spacecraft. Sol. Phys., 252, 373–383, 2008. [CrossRef] [Google Scholar]
  • Kaiser, M.L., T.A. Kucera, J.M. Davila, O.C.St. Cyr, M. Guhathakurta, and E. Christian. The STEREO mission: an introduction. Space Sci. Rev., 136, 5–16, 2008, DOI: 10.1007/s11214-007-9277-0. [NASA ADS] [CrossRef] [Google Scholar]
  • Kirnosov, V., L.-C. Chang, and A. Pulkkinen. Automatic CME front edge detection from STEREO white-light coronagraph images. Space Weather, 13 (8), 469–483, 2015, DOI: 10.1002/2015SW001190. [CrossRef] [Google Scholar]
  • Liu, Y., J.A. Davies, J.G. Luhmann, A. Vourlidas, S.D. Bale, and R.P. Lin. Geometric triangulation of imaging observations to track coronal mass ejections continuously out to 1 AU. Astrophys. J. Lett., 710, L82–L87, 2010, DOI: 101088/2041-8205/710/1/L82. [Google Scholar]
  • Mays, M.L., A. Taktakishvili, A. Pulkkinen, P.J. MacNeice, L. Rastätter, et al. Ensemble modeling of CMEs using the WSA-ENLIL+Cone model. Sol. Phys., 290 (6), 1775–1814, 2015, DOI: 10.1007/s11207-015-0692-1. [CrossRef] [Google Scholar]
  • MacQueen, R.M., J.A. Eddy, J.T. Gosling, E. Hildner, R.H. Munro, G.A. Newkirk Jr., A.I. Poland, and C.L. Ross. The outer solar corona as observed from SKYLAB: preliminary results. Astrophys. J., 187, L85–L88, 1974, DOI: 10.1086/181402. [Google Scholar]
  • Mierla, M., J. Davila, W. Thompson, B. Inhester, N. Srivastava, M. Kramar, O.C. StCyr, G. Stenborg, and R.A. Howard. A quick method for estimating the propagation direction of coronal mass ejections using STEREO-COR1 images. Sol. Phys., 252, 385–396, 2008. [CrossRef] [Google Scholar]
  • Mierla, M., B. Inhester, A. Antunes, Y. Boursier, J.P. Byrne, et al. On the 3-D reconstruction of coronal mass ejections using coronagraph data. Ann. Geophys., 28, 203–215, 2010. [NASA ADS] [CrossRef] [Google Scholar]
  • Morgan, H., J.P. Byrne, and S.R. Habbal. Automatically detecting and tracking coronal mass ejections. I. Separation of dynamic and quiescent components in coronagraph images. Astrophys. J., 752, 144, 2012, DOI: 10.1088/0004-637X/752/2/144. [Google Scholar]
  • Olmedo, O., J. Zhang, H. Wechsler, A. Poland, and K. Borne. Automatic detection and tracking of coronal mass ejections in coronagraph time series. Sol. Phys., 248, 485–499, 2008, DOI: 10.1007/s11207-007-9104-5. [NASA ADS] [CrossRef] [Google Scholar]
  • Pérez-Suárez, D., P.A. Higgins, D.S. Bloomfield, R.T.J. McAteer, L.D. Krista, J.P. Byrne, and P.T. Gallagher. Automated solar feature detection for space weather applications. In: R. Qahwaji, R. Green, and E. Hines, Editors. Applied signal and image processing: multidisciplinary advancements, IGI Global, Hershey, PA, 207–225, 2011, DOI: 10.4018/978-1-60960-477-6.ch013. [CrossRef] [Google Scholar]
  • Pulkkinen, A., T. Oates, and A. Taktakishvili. Automatic determination of the conic coronal mass ejection model parameters. Sol. Phys., 261, 115–126, 2009, DOI: 10.1007/s11207-009-9473-z. [CrossRef] [Google Scholar]
  • Robbrecht, E. and D. Berghmans. Automated recognition of coronal mass ejections (CMEs) in near-real-time data. A&A, 425, 1097–1106, 2004, DOI: 10.1051/0004-6361:20041302. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Robbrecht, E., D. Berghmans, and R.A.M. Van Der Linden. Automated LASCO CME catalog for solar cycle 23: Are CMEs scale invariant. Astrophys. J., 691, 1222–1234, 2009, DOI: 10.1088/0004-637X/691/2/1222. [NASA ADS] [CrossRef] [Google Scholar]
  • Srivastava, N., and P. Venkatakrishnan. Relationship between CME speed and geomagnetic storm intensity. Geophys. Res. Lett., 29, 1287, 2002, DOI: 10.10292001GL013597. [Google Scholar]
  • Srivastava, N., and P. Venkatakrishnan. Solar and interplanetary sources of major geomagnetic storms during 1996–2002. J. Geophys. Res., 109, A010103, 2004, DOI: 10.1029/2003JA010175. [Google Scholar]
  • Srivastava, N., B. Inhester, M. Mierla, and B. Podlipnik. 3D Reconstruction of the front edge of the 20 May 2007 partial halo CME. Sol. Phys., 259, 213–225, 2009, DOI: 10.1007/s11207-009-9423-9. [NASA ADS] [CrossRef] [Google Scholar]
  • Tappin, S.J., T.A. Howard, M.M. Hampson, R.N. Thompson, and C.E. Burns. On the autonomous detection of coronal mass ejections in heliospheric imager data. J. Geophys. Res., 117, A05103, 2012, DOI: 10.1029/2011JA017439. [Google Scholar]
  • Tousey, R. The solar corona. Space Res., 13, 713–730, 1973. [Google Scholar]
  • Wood, B.E., and R.A. Howard. An empirical reconstruction of the 2008 April 26 coronal mass ejection. Astrophys. J., 702, 901–910, 2009, DOI: 10.1088/0004-637X/702/2/901. [NASA ADS] [CrossRef] [Google Scholar]
  • Yashiro, S., G. Michalek, and N. Gopalswamy. A comparison of coronal mass ejections identified by manual and automatic methods. Ann. Geophys., 26, 3103–3112, 2008. [NASA ADS] [CrossRef] [Google Scholar]
  • Young, C.A., and P.T. Gallagher. Multiscale edge detection in the corona. Sol. Phys., 248, 457–469, 2008. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.