Open Access
Issue |
J. Space Weather Space Clim.
Volume 6, 2016
Brightness Variations of the Sun and Sun-like Stars and Resulting Influences on their Environments
|
|
---|---|---|
Article Number | A40 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/swsc/2016036 | |
Published online | 08 December 2016 |
- Chapman, G.A., J.J. Dobias, and T. Arias. Facular and sunspot areas during solar cycles 22 and 23. Astrophys. J., 728, 150, 2011, DOI: 10.1088/0004-637X/728/2/150. [CrossRef] [Google Scholar]
- Coddington, O., J.L. Lean, P. Pilewskie, M. Snow, and D. Lindholm. A solar irradiance climate data record. Bull. Am. Meteorol. Soc., 97, 1265, 2016, DOI: 10.1175/BAMS-D-14-00265.1. [Google Scholar]
- Danilovic, S., S.K. Solanki, W. Livingston, N. Krivova, and I. Vince. Variation of the Mn I 539.4 nm line with the solar cycle. A&A, 587, A33, 2016, DOI: 10.1051/0004-6361/201527039. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- DeLand, M.T., and R.P. Cebula. NOAA-11 Solar Backscatter Ultraviolet, model 2 (SBUV/2) solar spectral irradiance measurements in 1989–1994, 2. Results, validations, and comparisons. J. Geophys. Res. [Atmos.], 103, 16251, 1998. [Google Scholar]
- DeLand, M.T., and R.P. Cebula. Creation of a composite solar ultraviolet spectral irradiance data set. J. Geophys. Res. [Space Phys.], 113, A11103, 2008, DOI: 10.1029/2008JA013401. [CrossRef] [Google Scholar]
- DeLand, M.T., and R.P. Cebula. Solar UV variations during the decline of cycle 23. J. Atmos. Sol. Terr. Phys., 77, 225, 2012, DOI: 10.1016/j.jastp.2012.01.007. [NASA ADS] [CrossRef] [Google Scholar]
- DeLand, M.T., R.P. Cebula, and E. Hilsenrath. Observations of solar spectral irradiance change during cycle 22 from NOAA 9 Solar Backscattered Ultraviolet Model 2 (SBUV/2). J. Geophys. Res. [Atmos.], 109, D06304, 2004, DOI: 10.1029/2003JD004074. [CrossRef] [Google Scholar]
- Dobber, M., R. Dirksen, R.P. Levelt, G. van den Oord, Q. Kleipool, R. Voors, G. Jaross, and M. Kowalewski. EOS-Aura ozone monitoring instrument in-flight performance and calibration. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 6296, 62960R, 2006, DOI: 10.1117/12.677372. [Google Scholar]
- Dobber, M., Q. Kleipool, R. Dirksen, P. Levelt, G. Jaross, et al. Validation of ozone monitoring instrument level 1b data products. J. Geophys. Res. [Atmos.], 113, 5S06, 2008a, DOI: 10.1029/2007JD008665. [CrossRef] [Google Scholar]
- Dobber, M., R. Voors, R. Dirksen, Q. Kleipool, and P. Levelt. The high-resolution Solar reference spectrum between 250 and 550 nm and its application to measurements with the ozone monitoring instrument. Sol. Phys., 249, 281, 2008b, DOI: 10.1007/s11207-008-9187-7. [NASA ADS] [CrossRef] [Google Scholar]
- Ermolli, I., F. Berrilli, and A. Florio. A measure of the network radiative properties over the solar activity cycle. A&A, 412, 857, 2003, DOI: 10.1051/0004-6361:20031479. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Ermolli, I., K. Matthes, T. Dudok de Wit, N.A. Krivova, K. Tourpali, et al. Recent variability of the solar spectral irradiance and its impact on climate modelling. Atmos. Chem. Phys., 13, 3945, 2013, DOI: 10.5194/acp-13-3945-2013. [Google Scholar]
- Floyd, L. Filter responsivity degradation caused by solar UV exposure. Adv. Space Res., 23, 1459, 1999, DOI: 10.1016/S0273-1177(99)00298-7. [Google Scholar]
- Floyd, L.E., D.K. Prinz, P.C. Crane, and L.C. Herring. Solar UV irradiance variation during cycles 22 and 23. Adv. Space Res., 29, 1957, 2002, DOI: 10.1016/S0273-1177(02)00242-9. [Google Scholar]
- Floyd, L.E., P.A. Reiser, P.C. Crane, L.C. Herring, D.K. Prinz, and G.E. Brueckner. Solar cycle 22 UV spectral irradiance variability: current measurements by SUSIM UARS. Sol. Phys., 177, 79, 1998, DOI: 10.1023/A:1004907902440. [NASA ADS] [CrossRef] [Google Scholar]
- Fontenla, J.M., E. Avrett, G. Thuillier, and J. Harder. Semiempirical models of the solar atmosphere. I. The quiet- and active Sun photosphere at moderate resolution. Astrophys. J., 639, 441, 2006, DOI: 10.1086/499345. [Google Scholar]
- Foukal, P., and L. Milano. A measurement of the quiet network contribution to solar irradiance variation. Geophys. Res. Lett., 28, 883, 2001, DOI: 10.1029/2000GL012072. [NASA ADS] [CrossRef] [Google Scholar]
- Foukal, P., A. Ortiz, and R. Schnerr. Dimming of the 17th century Sun. Astrophys. J. Lett., 733, L38, 2011, DOI: 10.1088/2041-8205/733/2/L38. [NASA ADS] [CrossRef] [Google Scholar]
- Harder, J., G. Lawrence, J. Fontenla, G. Rottman, and T. Woods. The spectral irradiance monitor: scientific requirements, instrument design, and operation modes. Sol. Phys., 230, 141, 2005, DOI: 10.1007/s11207-005-5007-5. [NASA ADS] [CrossRef] [Google Scholar]
- Harder, J.W., J.M. Fontenla, P. Pilewskie, E.C. Richard, and T.N. Woods. Trends in solar spectral irradiance variability in the visible and infrared. Geophys. Res. Lett., 36, L07801, 2009, DOI: 10.1029/2008GL036797. [Google Scholar]
- Jin, C.L., J.X. Wang, Q. Song, and H. Zhao. The Sun’s small-scale magnetic elements in solar cycle 23. Astrophys. J., 731, 37, 2011, DOI: 10.1088/0004-637X/731/1/37. [CrossRef] [Google Scholar]
- Krivova, N.A., S.K. Solanki, and L. Floyd. Reconstruction of solar UV irradiance in cycle 23. A&A, 452, 631, 2006, DOI: 10.1051/0004-6361:20064809. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Lean, J. The Sun’s variable radiation and its relevance for Earth. Ann. Rev. Astron. Astroph., 35, 33, 1997, DOI: 10.1146/annurev.astro.35.1.33. [Google Scholar]
- Lean, J. Evolution of the Sun’s spectral irradiance since the Maunder minimum. Geophys. Res. Lett., 27, 2425, 2000, DOI: 10.1029/2000GL000043. [CrossRef] [Google Scholar]
- Lean, J.L., G.J. Rottman, H.L. Kyle, T.N. Woods, J.R. Hickey, and L.C. Puga. Detection and parameterization of variations in solar mid- and near-ultraviolet radiation (200–400 nm). J. Geophys. Res. [Atmos.], 102, 29939, 1997, DOI: 10.1029/97JD02092. [NASA ADS] [CrossRef] [Google Scholar]
- Lean, J.L., and M.T. DeLand. How does the Sun’s spectrum vary? J. Clim., 25, 2556, 2012. [Google Scholar]
- Livingston, W., L. Wallace, O.R. White, and M.S. Giampapa. Sun-as-a-star spectrum variations 1974–2006. Astrophys. J., 657, 1137, 2007. [CrossRef] [Google Scholar]
- Levelt, P.F., G.H.J. van den Oord, M.R. Dobber, A. Malkki, H. Visser, J. de Vries, P. Stammes, J.O.V. Lundell, and H. Saari. The ozone monitoring instrument. IEEE Geosci. Trans. Rem. Sens., 44, 1093, 2006, DOI: 10.1109/TGRS.2006.872333. [NASA ADS] [CrossRef] [Google Scholar]
- Marchenko, S.V., and M.T. DeLand. Solar spectral irradiance changes during cycle 24. Astrophys. J., 789, 117, 2014, DOI: 10.1088/0004-637X/789/2/117. [CrossRef] [Google Scholar]
- McClintock, W.E., G. Rottman, and T. N. Woods. Solar stellar irradiance comparison experiment II (SOLSTICE II): instrument concept and design. Sol. Phys., 230, 225, 2005, DOI: 10.1007/s11207-005-7432-x. [NASA ADS] [CrossRef] [Google Scholar]
- Mitchell, Jr., W.E., and W.C. Livingston Line-blanketing variations in the irradiance spectrum of the sun from maximum to minimum of the solar cycle. Astrophys. J., 372, 336, 1991, DOI: 10.1086/169980. [Google Scholar]
- Morrill, J.S., L. Floyd, and D. McMullin. The solar ultraviolet spectrum estimated using the Mg II Index and Ca II K disk activity. Sol. Phys., 269, 253, 2011, DOI: 10.1007/s11207-011-9708-7. [NASA ADS] [CrossRef] [Google Scholar]
- Morrill, J.S., L. Floyd, and D. McMullin. Comparison of solar UV spectral irradiance from SUSIM and SORCE. Sol. Phys., 289, 3641, 2014, DOI: 10.1007/s11207-014-0535-5. [NASA ADS] [CrossRef] [Google Scholar]
- Munro, R., R. Lang, D. Klaes, G. Poli, C. Retscher, et al. The GOME-2 instrument on the Metop series of satellites: instrument design, calibration, and level 1 data processing – an overview. Atmos. Meas. Tech., 9, 1279, 2016, DOI: 10.5194/amt-9-1279-2016. [CrossRef] [Google Scholar]
- Pagaran, J., M. Weber, M.T. DeLand, L.E. Floyd, and J.P. Burrows. Solar spectral irradiance variations in 240–1600 nm during the recent solar cycles 21–23. Sol. Phys., 272, 159, 2011. [NASA ADS] [CrossRef] [Google Scholar]
- Preminger, D.G., S.R. Walton, and G.A. Chapman. Photometric quantities for solar irradiance modeling. J. Geophys. Res. [Space Phys.], 107, 1354, 2002, DOI: 10.1029/2001JA009169. [Google Scholar]
- Rottman, G., L. Floyd, and R. Viereck. Measurement of the solar ultraviolet irradiance, in solar variability and its effects on climate. In: J.M. Pap, et al. Editors. Washington DC American Geophysical Union Geophysical Monograph Series, 141, 111, 2004. [Google Scholar]
- Schenkeveld, V.M.E., G. Jaross, S. Marchenko, D. Haffner, Q.L. Kleipool, N.C. Rozemeijer, J.P. Veefkind, and P.F. Levelt. In-flight performance of the ozone monitoring instrument. Atmos. Meas. Tech., Submitted, 2016 [Google Scholar]
- Singh, J., R. Belur, S. Raju, K. Pichaimani, M. Priyal, T. Gopalan Priya, and A. Kotikalapudi. Determination of the chromospheric quiet network element area index, its variation between 2008 and 2011. Res. Astron. Astrophys., 12, 201, 2012. DOI: 10.1088/1674-4527/12/2/008. [CrossRef] [Google Scholar]
- Snow, M., W.E. McClintock, G. Rottman, and T.N. Woods. Solar stellar irradiance comparison experiment II (SOLSTICE II): examination of the solar stellar comparison technique. Sol. Phys., 230, 295, 2005, DOI: 10.1007/s11207-005-8763-3. [NASA ADS] [CrossRef] [Google Scholar]
- Solanki, S.K. Smallscale solar magnetic fields – an overview. Space Sci. Rev., 63, 1, 1993, DOI: 10.1007/BF00749277. [NASA ADS] [CrossRef] [Google Scholar]
- Solanki, S.K., and Y.C. Unruh. Solar irradiance variability. Astron. Nachrichten, 334, 145, 2013, DOI: 10.1002/asna.201211752. [CrossRef] [Google Scholar]
- Solanki, S.K., N.A. Krivova, and J.D. Haigh. Solar irradiance variability and climate. Ann. Rev. Astron. Astrophys., 51, 311, 2013, DOI: 10.1146/annurev-astro-082812-141007. [Google Scholar]
- Unruh, Y.C., S.K. Solanki, and M. Fligge. The spectral dependence of facular contrast and solar irradiance variations. A&A, 345, 635, 1999. [Google Scholar]
- Unruh, Y.C., N.A. Krivova, S.K. Solanki, J.W. Harder, and G. Kopp. Spectral irradiance variations: comparison between observations and the SATIRE model on solar rotation time scales. A&A, 486, 311, 2008, DOI: 10.1051/0004-6361:20078421. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Woods, T.N., D.K. Prinz, G.J. Rottman, J. London, P.C. Crane, et al. Validation of the UARS solar ultraviolet irradiances: comparison with the ATLAS 1 and 2 measurements. J. Geophys. Res. [Atmos.], 101, 9541, 1996. [Google Scholar]
- Woods, T.N., M. Snow, J. Harder, G. Chapman, and A. Cookson. A different view of solar spectral irradiance variations: modeling total energy over six-month intervals. Sol. Phys., 290, 2649, 2015, DOI: 10.1007/s11207-015-0766-0. [NASA ADS] [CrossRef] [Google Scholar]
- Yeo, K.L., S.K. Solanki, and N.A. Krivova. Intensity contrast of solar network and faculae. A&A, 550, A95, 2013, DOI: 10.1051/0004-6361/201220682. [Google Scholar]
- Yeo, K.L., N.A. Krivova, and S.K. Solanki. Solar cycle variation in solar irradiance. Space Sci. Rev., 186, 137, 2014a, DOI: 10.1007/s11214-014-0061-7. [NASA ADS] [CrossRef] [Google Scholar]
- Yeo, K.L., N.A. Krivova, S.K. Solanki, and K.H. Glassmeier. Reconstruction of total and spectral solar irradiance from 1974 to 2013 based on KPVT, SoHO/MDI, and SDO/HMI observations. A&A, 570, A85, 2014b, DOI: 10.1051/0004-6361/201423628. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Yeo, K.L., W.T. Ball, N.A. Krivova, S.K. Solanki, Y.C. Unruh, and J. Morrill. UV solar irradiance in observations and the NRLSSI and SATIRE-S models. J. Geophys. Res. [Space Phys.], 120, 6055, 2015, DOI: 10.1002/2015JA021277. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.