Open Access
Research Article
Issue |
J. Space Weather Space Clim.
Volume 6, 2016
Brightness Variations of the Sun and Sun-like Stars and Resulting Influences on their Environments
|
|
---|---|---|
Article Number | A38 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/swsc/2016033 | |
Published online | 25 October 2016 |
- Adibekyan, V.Z., P. Figueira, N.C. Santos, A.A. Hakobyan, S.G. Sousa, et al. Kinematics and chemical properties of the Galactic stellar populations. The HARPS FGK dwarfs sample. A&A, 554, A44, 2013, DOI: 10.1051/0004-6361/201321520. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Affer, L., G. Micela, F. Favata, and E. Flaccomio. The rotation of field stars from CoRoT data. Mon. Not. R. Astron. Soc., 424, 11–22, 2012, DOI: 10.1111/j.1365-2966.2012.20802.x. [NASA ADS] [CrossRef] [Google Scholar]
- Aigrain, S., J. Llama, T. Ceillier, M.L.D. Chagas, J.R.A. Davenport, et al. Testing the recovery of stellar rotation signals from Kepler light curves using a blind hare-and-hounds exercise. Mon. Not. R. Astron. Soc., 450, 3211–3226, 2015, DOI: 10.1093/mnras/stv853. [NASA ADS] [CrossRef] [Google Scholar]
- Akeson, R.L., X. Chen, D. Ciardi, M. Crane, J. Good, et al. The NASA exoplanet archive: data and tools for exoplanet research. Publ. Astron. Soc. Pac., 125, 989–999, 2013, DOI: 10.1086/672273. [NASA ADS] [CrossRef] [Google Scholar]
- Angus, R., S. Aigrain, D. Foreman-Mackey, and A. McQuillan. Calibrating gyrochronology using Kepler asteroseismic targets. Mon. Not. R. Astron. Soc., 450, 1787–1798, 2015, DOI: 10.1093/mnras/stv423. [NASA ADS] [CrossRef] [Google Scholar]
- Baliunas, S., and R. Jastrow. Evidence for long-term brightness changes of solar-type stars. Nature, 348, 520–523, 1990, DOI: 10.1038/348520a0. [NASA ADS] [CrossRef] [Google Scholar]
- Baliunas, S.L., R.A. Donahue, W.H. Soon, J.H. Horne, J. Frazer, et al. Chromospheric variations in main-sequence stars. Astrophys. J., 438, 269–287, 1995, DOI: 10.1086/175072. [NASA ADS] [CrossRef] [Google Scholar]
- Barnes, S.A. On the rotational evolution of solar- and late-type stars, its magnetic origins, and the possibility of stellar gyrochronology. Astrophys. J., 586, 464–479, 2003, DOI: 10.1086/367639. [NASA ADS] [CrossRef] [Google Scholar]
- Barnes, S.A. Ages for illustrative field stars using gyrochronology: viability, limitations, and errors. Astrophys. J., 669, 1167–1189, 2007, DOI: 10.1086/519295. [NASA ADS] [CrossRef] [Google Scholar]
- Barnes, S.A., J. Weingrill, D. Fritzewski, K.G. Strassmeier, and I. Platais. Rotation periods for cool stars in the 4 Gyr old open cluster M67, the solar-stellar connection, and the applicability of gyrochronology to at least solar age. Astrophys. J., 823, 16, 2016, DOI: 10.3847/0004-637X/823/1/16. [NASA ADS] [CrossRef] [Google Scholar]
- Basri, G., L.M. Walkowicz, N. Batalha, R.L. Gilliland, J. Jenkins, et al. Photometric variability in Kepler target stars. II. An overview of amplitude, periodicity, and rotation in first quarter data. Astron. J., 141, 20, 2011, DOI: 10.1088/0004-6256/141/1/20. [NASA ADS] [CrossRef] [Google Scholar]
- Bastien, F.A., K.G. Stassun, G. Basri, and J. Pepper. An observational correlation between stellar brightness variations and surface gravity. Nature, 500, 427–430, 2013, DOI: 10.1038/nature12419. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Borucki, W.J., D. Koch, G. Basri, N. Batalha, T. Brown, et al. Kepler planet-detection mission: introduction and first results. Science, 327, 977, 2010, DOI: 10.1126/science.1185402. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Brown, T.M. The metastable dynamo model of stellar rotational evolution. Astrophys. J., 789, 101, 2014, DOI: 10.1088/0004-637X/789/2/101. [NASA ADS] [CrossRef] [Google Scholar]
- Brown, T.M., D.W. Latham, M.E. Everett, and G.A. Esquerdo. Kepler Input Catalog: photometric calibration and stellar classification. Astron. J., 142, 112–130, 2011, DOI: 10.1088/0004-6256/142/4/112. [NASA ADS] [CrossRef] [Google Scholar]
- Buzasi, D.L. Polar magnetic activity and spin-down on the lower main sequence. Astrophys. J., 484, 855–861, 1997. [NASA ADS] [CrossRef] [Google Scholar]
- Ceillier, T., J. van Saders, R.A. García, T.S. Metcalfe, O. Creevey, et al. Rotation periods and seismic ages of KOIs – comparison with stars without detected planets from Kepler observations. Mon. Not. R. Astron. Soc., 456, 119–125, 2016, DOI: 10.1093/mnras/stv2622. [NASA ADS] [CrossRef] [Google Scholar]
- Chang, H.-Y. Bimodal distribution of area-weighted latitude of sunspots and solar North-South asymmetry. New Astron., 17, 247–253, 2012, DOI: 10.1016/j.newast.2011.07.016. [NASA ADS] [CrossRef] [Google Scholar]
- Coughlin, J.L., S.E. Thompson, S.T. Bryson, C.J. Burke, D.A. Caldwell, et al. Contamination in the Kepler field. Identification of 685 KOIs as false positives via ephemeris matching based on Q1–Q12 data. Astron. J., 147, 119, 2014, DOI: 10.1088/0004-6256/147/5/119. [NASA ADS] [CrossRef] [Google Scholar]
- Datson, J., C. Flynn, and L. Portinari. Spectroscopic study of solar twins and analogues. A&A, 574, A124, 2015, DOI: 10.1051/0004-6361/201425000. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- do Nascimento Jr., R.A. García, J.-D., S. Mathur, F. Anthony, S.A. Barnes, et al. Rotation periods and ages of solar analogs and solar twins revealed by the Kepler Mission. Astrophys. J., 790, L23, 2014, DOI: 10.1088/2041-8205/790/2/L23. [NASA ADS] [CrossRef] [Google Scholar]
- Epstein, C.R., and M.H. Pinsonneault. How good a clock is rotation? The stellar rotation-mass-age relationship for old field stars. Astrophys. J., 780, 159, 2014, DOI: 10.1088/0004-637X/780/2/159. [NASA ADS] [CrossRef] [Google Scholar]
- Fressin, F., G. Torres, D. Charbonneau, S.T. Bryson, J. Christiansen, C.D. Dressing, J.M. Jenkins, L.M. Walkowicz, and N.M. Batalha. The false positive rate of Kepler and the occurrence of planets. Astrophys. J., 766, 81, 2013, DOI: 10.1088/0004-637X/766/2/81. [NASA ADS] [CrossRef] [Google Scholar]
- Froehlich, C., J.M. Pap, and H.S. Hudson. Improvement of the photometric sunspot index and changes of the disk-integrated sunspot contrast with time. Sol. Phys., 152, 111–118, 1994, DOI: 10.1007/BF01473192. [CrossRef] [Google Scholar]
- Gafeira, R., C.C. Fonte, M.A. Pais, and J. Fernandes. Temporal evolution of sunspot areas and estimation of related plasma flows. Sol. Phys., 289, 1531–1542, 2014, DOI: 10.1007/s11207-013-0440-3. [NASA ADS] [CrossRef] [Google Scholar]
- García, R.A., T. Ceillier, D. Salabert, S. Mathur, J.L. van Saders, et al. Rotation and magnetism of Kepler pulsating solar-like stars. Towards asteroseismically calibrated age-rotation relations. A&A, 572, A34, 2014, DOI: 10.1051/0004-6361/201423888. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Giampapa, M.S., J.C. Hall, R.R. Radick, and S.L. Baliunas. A survey of chromospheric activity in the solar-type stars in the open cluster M67. Astrophys. J., 651, 444–461, 2006, DOI: 10.1086/507624. [NASA ADS] [CrossRef] [Google Scholar]
- Gilliland, R.L., W.J. Chaplin, E.W. Dunham, V.S. Argabright, W.J. Borucki, et al. Kepler mission stellar and instrument noise properties. Astrophys. J. Supp., 197, 6, 2011, DOI: 10.1088/0067-0049/197/1/6. [NASA ADS] [CrossRef] [Google Scholar]
- Girardi, L., M.A.T. Groenewegen, E. Hatziminaoglou, and L. da Costa. Star counts in the Galaxy. Simulating from very deep to very shallow photometric surveys with the TRILEGAL code. A&A, 436, 895–915, 2005, DOI: 10.1051/0004-6361:20042352. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Hall, J.C., G.W. Lockwood, and B.A. Skiff. The activity and variability of the sun and sun-like stars. I. Synoptic Ca II H and K observations. Astron. J., 133, 862–881, 2007, DOI: 10.1086/510356. [NASA ADS] [CrossRef] [Google Scholar]
- Hall, J.C., G.W. Henry, G.W. Lockwood, B.A. Skiff, and S.H. Saar. The activity and variability of the sun and sun-like stars. II. Contemporaneous photometry and spectroscopy of bright solar analogs. Astron. J., 138, 312–322, 2009, DOI: 10.1088/0004-6256/138/1/312. [NASA ADS] [CrossRef] [Google Scholar]
- Hartman, J.D., B.S. Gaudi, M.J. Holman, B.A. McLeod, K.Z. Stanek, J.A. Barranco, M.H. Pinsonneault, S. Meibom, and J.S. Kalirai. Deep MMT transit survey of the open cluster M37 IV: limit on the fraction of stars with planets as small as 0.3RJ. Astrophys. J., 695, 336–356, 2009, DOI: 10.1088/0004-637X/695/1/336. [NASA ADS] [CrossRef] [Google Scholar]
- Hathaway, D.H. A standard law for the equatorward drift of the sunspot zones. Sol. Phys., 273, 221–230, 2011, DOI: 10.1007/s11207-011-9837-z. [NASA ADS] [CrossRef] [Google Scholar]
- Howell, S.B., C. Sobeck, M. Haas, M. Still, T. Barclay, et al. The K2 mission: characterization and early results. Publ. Astron. Soc. Pac., 126, 398–408, 2014, DOI: 10.1086/676406. [NASA ADS] [CrossRef] [Google Scholar]
- Huber, D., V. Silva Aguirre, J.M. Matthews, M.H. Pinsonneault, E. Gaidos, et al. Revised stellar properties of Kepler targets for the quarter 1-16 transit detection run. Astrophysical Journal Supplement Series, 211, 2, 2014, DOI: 10.1088/0067-0049/211/1/2. [NASA ADS] [CrossRef] [Google Scholar]
- Ivanov, V.G., and E.V. Miletsky. Width of sunspot generating zone and reconstruction of butterfly. Sol. Phys., 268, 231–242, 2011, DOI: 10.1007/s11207-010-9665-6. [NASA ADS] [CrossRef] [Google Scholar]
- Kawaler, S.D. Angular momentum loss in low-mass stars. Astrophys. J., 333, 236–247, 1988, DOI: 10.1086/166740. [NASA ADS] [CrossRef] [Google Scholar]
- Kovács, G. Are the gyro-ages of field stars underestimated? A&A, 581, A2, 2015, DOI: 10.1051/0004-6361/201525920. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Kraft, R.P. Studies of stellar rotation. V. The dependence of rotation on age among solar-type stars. Astrophys. J., 150, 551, 1967, DOI: 10.1086/149359. [NASA ADS] [CrossRef] [Google Scholar]
- Lubin, D., D. Tytler, and D. Kirkman. Lithium abundance in solar-type stars with low chromospheric activity: application to the search for maunder minimum analogs. Astrophys. J., 716, 766–775, 2010, DOI: 10.1088/0004-637X/716/1/766. [NASA ADS] [CrossRef] [Google Scholar]
- Lubin, D., D. Tytler, and D. Kirkman. Frequency of Maunder minimum events in solar-type stars inferred from activity and metallicity observations. Astrophys. J., 747, L32, 2012, DOI: 10.1088/2041-8205/747/2/L32. [CrossRef] [Google Scholar]
- Mamajek, E.E., and L.A. Hillenbrand. Improved age estimation for solar-type dwarfs using activity-rotation diagnostics. Astrophys. J., 687, 1264–1293, 2008, DOI: 10.1086/591785. [NASA ADS] [CrossRef] [Google Scholar]
- Mamajek, E.E., A. Prsa, G. Torres, P. Harmanec, M. Asplund, et al. IAU 2015 resolution B3 on recommended nominal conversion constants for selected solar and planetary properties. arXiv: 1510.07674, 2015. [Google Scholar]
- Mazeh, T., H.B. Perets, A. McQuillan, and E.S. Goldstein. Photometric amplitude distribution of stellar rotation of KOIs – indication for spin-orbit alignment of cool stars and high obliquity for hot stars. Astrophys. J., 801, 3, 2015, DOI: 10.1088/0004-637X/801/1/3. [NASA ADS] [CrossRef] [Google Scholar]
- McQuillan, A., T. Mazeh, and S. Aigrain. Rotation periods of 34,030 Kepler main-sequence stars: the full autocorrelation sample. Astrophysical Journal Supplement Series, 211, 24, 2014, DOI: 10.1088/0067-0049/211/2/24. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Miglio, A., C. Chiappini, T. Morel, M. Barbieri, W.J. Chaplin, et al. Galactic archaeology: mapping and dating stellar populations with asteroseismology of red-giant stars. Mon. Not. R. Astron. Soc., 429, 423–428, 2013, DOI: 10.1093/mnras/sts345. [NASA ADS] [CrossRef] [Google Scholar]
- Nielsen, M.B., L. Gizon, H. Schunker, and C. Karoff. Rotation periods of 12 000 main-sequence Kepler stars: dependence on stellar spectral type and comparison with v sin i observations. A&A, 557, L10, 2013, DOI: 10.1051/0004-6361/201321912. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Noyes, R.W., L.W. Hartmann, S.L. Baliunas, D.K. Duncan, and A.H. Vaughan. Rotation, convection, and magnetic activity in lower main-sequence stars. Astrophys. J., 279, 763–777, 1984, DOI: 10.1086/161945. [NASA ADS] [CrossRef] [Google Scholar]
- Önehag, A., A. Korn, B. Gustafsson, E. Stempels, and D.A. Vandenberg. M67-1194, an unusually sunlike solar twin in M67. A&A, 528, A85, 2011, DOI: 10.1051/0004-6361/201015138. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Pinsonneault, M.H., D. An, J. Molenda-Żakowicz, W.J. Chaplin, T.S. Metcalfe, and H. Bruntt. A revised effective temperature scale for the Kepler Input Catalog. Astrophysical Journal Supplement Series, 199, 30, 2012, DOI: 10.1088/0067-0049/199/2/30. [NASA ADS] [CrossRef] [Google Scholar]
- Porto de Mello, G.F., R. da Silva, L. da Silva, and R.V. de Nader. A photometric and spectroscopic survey of solar twin stars within 50 parsecs of the Sun. I. Atmospheric parameters and color similarity to the Sun. A&A, 563, A52, 2014, DOI: 10.1051/0004-6361/201322277. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Prša, A., N. Batalha, R.W. Slawson, L.R. Doyle, W.F. Welsh, et al. Kepler eclipsing binary stars. I. Catalog and principal characterization of 1879 eclipsing binaries in the first data release. Astron. J., 141, 83, 2011, DOI: 10.1088/0004-6256/141/3/83. [NASA ADS] [CrossRef] [Google Scholar]
- Radick, R.R., G.W. Lockwood, B.A. Skiff, and S.L. Baliunas. Patterns of variation among sun-like stars. Astrophysical Journal Supplement Series, 118, 239–258, 1998, DOI: 10.1086/313135. [NASA ADS] [CrossRef] [Google Scholar]
- Reinhold, T., and L. Gizon. Rotation, differential rotation, and gyrochronology of active Kepler stars. A&A, 583, A65, 2015, DOI: 10.1051/0004-6361/201526216. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Reinhold, T., A. Reiners, and G. Basri. Rotation and differential rotation of active Kepler stars. A&A, 560, A4, 2013, DOI: 10.1051/0004-6361/201321970. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Rocha-Pinto, H.J., and W.J. Maciel. The metallicity distribution of G dwarfs in the solar neighbourhood. Mon. Not. R. Astron. Soc., 279, 447–458, 1996, DOI: 10.1093/mnras/279.2.447. [CrossRef] [Google Scholar]
- Rogers, T.M., and D.N.C. Lin. On the tidal dissipation of obliquity. Astrophys. J., 769, L10, 2013, DOI: 10.1088/2041-8205/769/1/L10. [NASA ADS] [CrossRef] [Google Scholar]
- Santos, A.R.G., M.S. Cunha, P.P. Avelino, and T.L. Campante. Spot cycle reconstruction: an empirical tool. Application to the sunspot cycle. A&A, 580, A62, 2015, DOI: 10.1051/0004-6361/201425299. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Schuessler, M., and S.K. Solanki. Why rapid rotators have polar spots. A&A, 264, L13–L16, 1992. [Google Scholar]
- Shapiro, A.I., S.K. Solanki, N.A. Krivova, W.K. Schmutz, W.T. Ball, R. Knaack, E.V. Rozanov, and Y.C. Unruh. Variability of sun-like stars: reproducing observed photometric trends. A&A, 569, A38, 2014, DOI: 10.1051/0004-6361/201323086. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Skumanich, A. Time scales for CA II emission decay, rotational braking, and lithium depletion. Astrophys. J., 171, 565, 1972, DOI: 10.1086/151310. [NASA ADS] [CrossRef] [Google Scholar]
- Smith, J.C., M.C. Stumpe, J.E. Van Cleve, J.M. Jenkins, T.S. Barclay, et al. Kepler presearch data conditioning II – a Bayesian approach to systematic error correction. Publ. Astron. Soc. Pac., 124, 1000–1014, 2012, DOI: 10.1086/667697. [NASA ADS] [CrossRef] [Google Scholar]
- Takeda, Y. Fundamental parameters and elemental abundances of 160 F-G-K stars based on OAO spectrum database. Publ. Astron. Soc. Jpn., 59, 335–356, 2007, DOI: 10.1093/pasj/59.2.335. [CrossRef] [Google Scholar]
- Takeda, Y., A. Tajitsu, S. Honda, S. Kawanomoto, H. Ando, and T. Sakurai. Detection of low-level activities in solar-analog stars from emission strengths of the Ca II 3934 line. Publ. Astron. Soc. Jpn., 64, 130, 2012, DOI: 10.1093/pasj/64.6.130. [CrossRef] [Google Scholar]
- van Saders, J.L., T. Ceillier, T.S. Metcalfe, V. Silva Aguirre, M.H. Pinsonneault, R.A. García, S. Mathur, and G.R. Davies. Weakened magnetic braking as the origin of anomalously rapid rotation in old field stars. Nature, 529, 181–184, 2016, DOI: 10.1038/nature16168. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Walkowicz, L.M., and G.S. Basri. Rotation periods, variability properties and ages for Kepler exoplanet candidate host stars. Mon. Not. R. Astron. Soc., 436, 1883–1895, 2013, DOI: 10.1093/mnras/stt1700. [NASA ADS] [CrossRef] [Google Scholar]
- Winn, J.N., and D.C. Fabrycky. The occurrence and architecture of exoplanetary systems. Annu. Rev. Astron. Astrophys., 53, 409–447, 2015, DOI: 10.1146/annurev-astro-082214-122246. [NASA ADS] [CrossRef] [Google Scholar]
- Winn, J.N., D. Fabrycky, S. Albrecht, and J.A. Johnson. Hot stars with hot Jupiters have high obliquities. Astrophys. J., 718, L145–L149, 2010, DOI: 10.1088/2041-8205/718/2/L145. [NASA ADS] [CrossRef] [Google Scholar]
- Wright, J.T. Do we know of any Maunder minimum stars? Astron. J., 128, 1273–1278, 2004, DOI: 10.1086/423221. [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.