Open Access
J. Space Weather Space Clim.
Volume 6, 2016
Article Number A35
Number of page(s) 13
Published online 07 October 2016
  • Allison, I., M.Beland, K.Alverson, R.E.Bell, D.Carlson, et al. The scope of science for the International Polar Year 2007–2008, WMO/TD-1364. World Meteorol. Organ., 117, Geneva, Switzerland, 79, 2007. [Google Scholar]
  • Bilitza, D. Models for ionospheric electron and ion temperature. In: V.Lincoln, R.Conkright, and K.Rawer, Editors. International Reference Ionosphere – IRI 79, Rep. UAG-82, World Data Cent. A for Sol. Terr. Phys, Boulder, Co, 7–10, 1981. [Google Scholar]
  • Bilitza, D. International reference ionosphere, National Space Science Data Center, Report 90-22, Greenbelt, Maryland, USA, 1990. [Google Scholar]
  • Bilitza, D. International Reference Ionosphere 2000. Radio Sci., 36, 261–275, 2001. [CrossRef] [Google Scholar]
  • Bilitza, D., and B.W.Reinisch. International reference ionosphere 2007: improvements and new parameters. Space Res., 42, 599–609, 2008, DOI: 10.5047/eps.2011.05.023. [Google Scholar]
  • Bilitza, D., D.Altadill, Y.Zhang, C.Mertens, V.Truhlik, P.Richards, L.-A.McKinnell, and B.Reinisch. The International Reference Ionosphere 2012 – a model of international collaboration. J. Space Weather Space Clim., 4, A07, 2014, DOI: 10.1051/swsc/2014004. [CrossRef] [EDP Sciences] [Google Scholar]
  • Blelly, P.-L., D.Alcaydé, and A.P.van Eyken. A new analysis method for determining polar ionosphere and upper atmosphere characteristics from ESR data: illustration with IPY period. J. Geophys. Res., 115, A09322, 2010, DOI: 10.1029/2009JA014876. [CrossRef] [Google Scholar]
  • Chao, C.K., S.-Y.Su, and H.C.Yeh. Ion temperature variation observed by ROCSAT-1 satellite in the afternoon sector and its comparison with IRI-2001 model. Adv. Space Res., 37, 879–884, 2005. [CrossRef] [Google Scholar]
  • Crowley, G., D.J.Knipp, K.A.Drake, J.Lei, E.Sutton, and H.Lühr. Thermospheric density enhancements in the dayside cusp region during strong BY conditions. Geophys. Res. Lett., 37, L07110, 2010, DOI: 10.1029/2009GL042143. [CrossRef] [Google Scholar]
  • Deng, Y., A.Maute, A.D.Richmond, and R.G.Roble. Impact of electric field variability on Joule heating and thermospheric temperature and density. Geophys. Res. Lett., 36, L08105, 2009, DOI: 10.1029/2008GL036916. [Google Scholar]
  • Deng, Y., T.J.Fuller-Rowell, A.J.Ridley, D.Knipp, and R.E.Lopez. Theoretical study: influence of different energy sources on the cusp neutral density enhancement. J. Geophys. Res. [Space Phys.], 118, 2340–2349, 2013, DOI: 10.1002/jgra.50197. [CrossRef] [Google Scholar]
  • Efron, B. Nonparametric estimates of standard error: the jackknife, the bootstrap, and other methods. Biometrika, 68(3), 589–599, 1981. [CrossRef] [Google Scholar]
  • Emmert, J.T., S.E.McDonald, D.P.Drob, R.R.Meier, J.L.Lean, and J.M.Picone. Attribution of interminima changes in the global thermosphere and ionosphere. J. Geophys. Res. [Space Phys.], 119, 6657–6688, 2014, DOI: 10.1002/2013JA019484. [CrossRef] [Google Scholar]
  • Evans, J. Theory and practice of ionosphere study by Thomson scatter radar. Proc. IEEE, 57(4), 496–530, 1969. [CrossRef] [Google Scholar]
  • Finlay, C.C., S.Maus, C.D.Beggan, T.N.Bondar, A.Chambodut, et al. Ionospheric electrodynamics using magnetic apex coordinates. Geophys. J. Int., 183, 1216–1230, 2010. [Google Scholar]
  • Fujiwara, H., S.Nozawa, S.Maeda, Y.Ogawa, Y.Miyoshi, H.Jin, H.Shinagawa, and K.Terada. Polar cap ionosphere and thermosphere during the solar minimum period: EISCAT Svalbard radar observations and GCM simulations. Earth Planets Space, 64, 459–465, 2012, DOI: 10.5047/eps.2011.05.023. [CrossRef] [Google Scholar]
  • Hagan, M.E., and J.M.Forbes. Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res., 107(D24), 4754, 2002, DOI: 10.1029/2001JD001236. [CrossRef] [Google Scholar]
  • Hagan, M.E., and J.M.Forbes. Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res., 108(A2), 1062, 2003, DOI: 10.1029/2002JA009466. [CrossRef] [Google Scholar]
  • King, J.H., and N.E.Papitashvili. Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data. J. Geophys. Res., 110, A02104, 2005, DOI: 10.1029/2004JA010649. [Google Scholar]
  • Kosch, J.M., and E.Nielsen. Coherent radar estimates of average high-latitude ionospheric Joule heating. J. Geophys. Res., 100, 12201–12215, 1995. [CrossRef] [Google Scholar]
  • Lehtinen, M.S., and A.Huuskonen. General incoherent scatter analysis and GUISDAP. J. Atmos. Terr. Phys., 58, 435–452, 1996. [CrossRef] [Google Scholar]
  • Lei, J., R.G.Roble, W.Wang, B.A.Emery, and S.-R.Zhang. Electron temperature climatology at Millstone Hill and Arecibo. J. Geophys. Res., 112, A02302, 2007, DOI: 10.1029/2006JA012041. [Google Scholar]
  • Liu, H., H.Lühr, V.Henize, and W.Köhler. Global distribution of the thermospheric total mass density derived from CHAMP. J. Geophys. Res., 110, A04301, 2005, DOI: 10.1029/2004JA010741. [Google Scholar]
  • Lühr, H., M.Rother, W.Köhler, P.Ritter, and L.Grunwaldt. Thermospheric up-welling in the cusp region: evidence from CHAMP observations. Geophys. Res. Lett., 31, L06805, 2004, DOI: 10.1029/2003GL019314. [Google Scholar]
  • Miyoshi, Y., and H.Fujiwara. Day-to-day variations of migrating diurnal tide simulated by a GCM from the ground surface to the exobase. Geophys. Res. Lett., 30(15), 1789, 2003, DOI: 10.1029/2003GL017695. [CrossRef] [Google Scholar]
  • Ogawa, Y., S.C.Buchert, I.Häggström, M.T.Rietveld, R.Fujii, S.Nozawa, and H.Miyaoka. On the statistical relation between ion upflow and naturally enhanced ion-acoustic lines observed with the EISCAT Svalbard radar. J. Geophys. Res., 116, A03313, 2011, DOI: 10.1029/2010JA015827. [CrossRef] [Google Scholar]
  • Oliver, W.L., J.M.Holt, S.-R.Zhang, and L.P.Goncharenko. Long-term trends in thermospheric neutral temperature and density above Millstone Hill. J. Geophys. Res., 119, 7940–7946, 2014, DOI: 10.1002/2014JA020311. [Google Scholar]
  • Picone, J.M., A.E.Hedin, D.P.Drob, and A.C.Aikin. NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J. Geophys. Res., 107(A12), 1468, 2002, DOI: 10.1029/2002JA009430. [Google Scholar]
  • Qian, L., A.G.Burns, B.A.Emery, B.Foster, G.Lu, et al. The NCAR TIE-GCM: a community model of the coupled thermosphere/ionosphere system. In: J.Huba, R.Schunk, G.Khazanov, eds. Modeling the Ionosphere-Thermosphere System, AGU Geophysical Monograph Series. John Wiley & Sons, Ltd, Chichester, UK, 2014, DOI: 10.1002/9781118704417. [Google Scholar]
  • Remick, K.J. Baseline high-latitude ionospheric parameters and field-aligned ion motion. J. Geophys. Res., 111, A07311, 2006, DOI: 10.1029/2004JA010711. [CrossRef] [Google Scholar]
  • Rentz, S., and H.Lühr. Climatology of the cusp-related thermospheric mass density anomaly, as derived from CHAMP observations. Ann. Geophys., 26, 2807–2823, 2008. [CrossRef] [Google Scholar]
  • Richards, P.G., M.J.Nicolls, C.J.Heinselman, J.J.Sojka, J.M.Holt, and R.R.Meier. Measured and modeled ionospheric densities, temperatures, and winds during the international polar year. J. Geophys. Res. [Space Phys.], 114, A12317, 2009, DOI: 10.1029/2009JA014625. [CrossRef] [Google Scholar]
  • Richmond, A.D. Ionospheric electrodynamics using magnetic apex coordinates. J. Geomagn. Geoelectr., 47, 191–212, 1995. [CrossRef] [Google Scholar]
  • Richmond, A.D., E.C.Ridley, and R.G.Roble. A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys. Res. Lett., 19, 601–604, 1992. [Google Scholar]
  • Russell, C.T., J.G.Luhmann, and L.K.Jian. How unprecedented a solar minimum? Rev. Geophys., 48, RG2004, 2010, DOI: 10.1029/2009RG000316. [NASA ADS] [CrossRef] [Google Scholar]
  • Sojka, J., R.Schunk, T.van Eyken, J.Kelly, C.Heinselman, and M.McCready. Ionospheric challenges of the International Polar Year. Eos Trans. AGU, 88(15), 771, 2007, DOI: 10.1029/2007EO150003. [CrossRef] [Google Scholar]
  • Sojka, J.J., R.L.McPherron, A.P.van Eyken, M.J.Nicolls, C.J.Heinselman, and J.D.Kelly. Observations of ionospheric heating during the passage of solar coronal hole fast streams. Geophys. Res. Lett., 36, L19105, 2009, DOI: 10.1029/2009GL039064. [CrossRef] [Google Scholar]
  • Sojka, J.J., M.Nicolls, A.van Eyken, C.Heinselman, and D.Bilitza. 24/7 solar minimum polar cap and auroral ion temperature observations. Adv. Space Res., 48, 1–11, 2011, DOI: 10.1016/j.asr.2011.03.005. [CrossRef] [Google Scholar]
  • Solomon, S.C., T.N.Woods, L.V.Didkovsky, J.T.Emmert, and L.Qian. Anomalously low solar extreme-ultraviolet irradiance and thermospheric density during solar minimum. Geophys. Res. Lett., 37, L16103, 2010, DOI: 10.1029/2010GL044468. [Google Scholar]
  • Tsurutani, B.T., W.D.Gonzalez, A.L.C.Gonzalez, F.L.Guarnieri, N.Gopalswamy, et al. Corotating solar wind streams and recurrent geomagnetic activity: a review. J. Geophys. Res., 111, A07S01, 2006, DOI: 10.1029/2005JA011273. [Google Scholar]
  • Vickers, H., M.J.Kosch, E.Sutton, Y.Ogawa, and C.La Hoz. Thermospheric atomic oxygen density estimates using the EISCAT Svalbard Radar. J. Geophys. Res. [Space Phys.], 118, 1319–1330, 2013, DOI: 10.1002/jgra.50169. [CrossRef] [Google Scholar]
  • Vlasov, A., K.Kauristie, M.van de Kamp, J.-P.Luntama, and A.Pogoreltsev. A study of traveling ionospheric disturbances and atmospheric gravity waves using EISCAT Svalbard Radar IPY-data. Ann. Geophys., 29, 2101–2116, 2011, DOI: 10.5194/angeo-29-2101-2011. [CrossRef] [Google Scholar]
  • Weimer, D.R. Improved ionospheric electrodynamic models and application to calculating Joule heating rates. J. Geophys. Res., 110, A05306, 2005, DOI: 10.1029/2004JA010884. [Google Scholar]
  • Yamazaki, Y., and A.D.Richmond. A theory of ionospheric response to upward-propagating tides: electrodynamic effects and tidal mixing effects. J. Geophys. Res. [Space Phys.], 118, 5891–5905, 2013, DOI: 10.1002/jgra.50487. [CrossRef] [Google Scholar]
  • Yamazaki, Y., M.J.Kosch, and E.K.Sutton. North-south asymmetry of the high-latitude thermospheric density: IMF BY effect. Geophys. Res. Lett., 42, 225–232, 2015a, DOI: 10.1002/2014GL062748. [CrossRef] [Google Scholar]
  • Yamazaki, Y., M.J.Kosch, and E.Sutton. A model of high-latitude thermospheric density. J. Geophys. Res. [Space Phys.], 120, 7903–7917, 2015b, DOI: 10.1002/2015JA021371. [CrossRef] [Google Scholar]
  • Zettergren, M., J.Semeter, C.Heinselman, and M.Diaz. Incoherent scatter radar estimation of F region ionospheric composition during frictional heating events. J. Geophys. Res., 116, A01318, 2011, DOI: 10.1029/2010JA016035. [CrossRef] [Google Scholar]
  • Zhang, S.-R., and J.M.Holt. Ionospheric plasma temperatures during 19762001 over Millstone Hill. J. Geophys. Res., 109, A11311, 2004, DOI: 10.1029/2004JA010709. [CrossRef] [Google Scholar]
  • Zhang, S.-R., J.M.Holt, A.M.Zalucha, and C.Amory-Mazaudier. Midlatitude ionospheric plasma temperature climatology and empirical model based on Saint Santin incoherent scatter radar data from 1966 to 1987. Adv. Space Res., 33, 963–969, 2004. [CrossRef] [Google Scholar]
  • Zhang, S.-R., J.M.Holt, D.K.Bilitza, T.van Eyken, M.McCready, C.Amory-Mazaudier, S.Fukao, and M.Sulzer. Multiple-site comparisons between models of incoherent scatter radar and IRI. Adv. Space Res., 39, 910–917, 2007. [CrossRef] [Google Scholar]
  • Zhang, S.-R., J.M.Holt, A.P.van Eyken, C.Heinselman, and M.McCready. IPY observations of ionospheric yearly variations from high- to middle-latitude incoherent scatter radars. J. Geophys. Res., 115, A03303, 2010, DOI: 10.1029/2009JA014327. [Google Scholar]
  • Zhang, B., W.Lotko, O.Brambles, M.Wiltberger, W.Wang, P.Schmitt, and J.Lyon. Enhancement of thermospheric mass density by soft electron precipitation. Geophys. Res. Lett., 39, L20102, 2012, DOI: 10.1029/2012GL053519. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.