Open Access
J. Space Weather Space Clim.
Volume 6, 2016
Article Number A36
Number of page(s) 15
Published online 17 October 2016
  • Afraimovich, E.L., E.A.Kosogorov, and O.S.Lesyuta. Effects of the August 11, 1999 total solar eclipse as deduced from total electron content measurements at the GPS network. J. Atmos. Sol. Terr. Phys., 64, 1933–1941, 2002. [CrossRef] [Google Scholar]
  • Altadill, D., J.G.Sole, and E.M.Apostolov. Vertical structure of a gravity wave like oscillation in the ionosphere generated by the solar eclipse of August 11, 1999. J. Geophys. Res., 106, 21419–21428, 2001. [CrossRef] [Google Scholar]
  • Cheng, K., Y.N.Huang, and S.W.Chen. Ionospheric effects of the solar eclipse of September 23, 1987, around the equatorial anomaly crest region. J. Geophys. Res., 97, 103–111, 1992. [CrossRef] [Google Scholar]
  • Chimonas, G., and C.O.Hines. Atmospheric gravity waves induced by a solar eclipse. J. Geophys. Res., 75, 875, 1970. [CrossRef] [Google Scholar]
  • Clilverd, M.A., C.J.Rodger, N.R.Thomson, J.Lichtenberger, P.Steinbach, P.Cannon, and M.J.Angling. Total solar eclipse effects on VLF signals and modeling Observations. Radio Sci., 36, 773–788, 2001. [CrossRef] [Google Scholar]
  • Cohen, E.A. The study of the effect of solar eclipses on the ionosphere based on satellite beacon observations. Radio Sci., 19 (3), 769–777, 1984. [CrossRef] [Google Scholar]
  • Davis, M.J., and A.V.Da Rosa. Possible detection of atmospheric gravity waves generated by the solar eclipse. Nature, 226, 1123, 1970. [CrossRef] [Google Scholar]
  • Dow, J.M., R.E.Neilan, and C.Rizos. The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J. Geod., 83, 191–198, 2009, DOI: 10.1007/s00190-008-0300-3. [Google Scholar]
  • Fritts, D.C., and Z.Luo. Gravity wave forcing in the middle atmosphere due to reduced ozone heating during a solar eclipse. J. Geophys. Res., 98 (D2), 3011–3021, 1993. [CrossRef] [Google Scholar]
  • Galkin, I.A., and B.W.Reinisch. The new Artist-5 for all digisondes. Ionosonde Network Advisory Group INAG Bulletin, 69, 1–8, 2008. [Google Scholar]
  • Hoque, M.M., and N.Jakowski. An alternative ionospheric correction model for global navigation satellite systems. J. Geod., 89, 391–406, 2014, DOI: 10.1007/s00190-014-0783-z. [Google Scholar]
  • Jakowski, N., H.D.Bettac, B.Lazo, L.Palacio, and L.Lois. The ionospheric response to the solar eclipse of 26 February 1979 observed in Havana/Cuba. Phys. Solariterr, 20, 110–116, 1983. [Google Scholar]
  • Jakowski, N., S.Schlueter, S.Heise, and J.Feltens. Satellite technology glimpses ionospheric response to solar eclipse. EOS, Transactions. American Geophysical Union, 80 (51), 621–626, 1999. [CrossRef] [Google Scholar]
  • Jakowski, N., S.Heise, A.Wehrenpfennig, and S.Schlueter. Total electron content studies of the solar eclipse on 11 August 1999. CD-ROM, Proc. IBSS, Boston, MA 4–6 June 2001, 279–283, 2001. [Google Scholar]
  • Jakowski, N., S.Stankov, V.Wilken, C.Borries, D.Altadill, et al. Ionospheric behaviour over Europe during the solar eclipse of 3 October 2005. J. Atmos. Sol. Terr. Phys., 70, 836–853, 2008. [Google Scholar]
  • Jakowski, N., C.Mayer, M.M.Hoque, and V.Wilken. TEC Models and their use in ionosphere monitoring. Radio Sci., 46, RS0D18, 2011, DOI: 10.1029/2010RS004620. [CrossRef] [Google Scholar]
  • Krankowski, A., I.I.Shagimuratov, L.W.Baran, and G.A.Yakimova. The effect of total solar eclipse of October 3, 2005, on the total electron content over Europe. Adv. Space Res., 41 (4), 628–638, 2008. [Google Scholar]
  • Le, H., L.Liu, X.Yue, and W.Wan. The mid-latitude F2 layer during solar eclipses: observations and modeling. J. Geophys. Res, 113, A08309, 2008, DOI: 10.1029/2007JA013012. [Google Scholar]
  • Le, H., L.Liu, X.Yue, W.Wan, and B.Ning. Latitudinal dependence of the ionospheric response to solar eclipse. J. Geophys. Res., 114, A07308, 2009, DOI: 10.1029/2009JA014072. [Google Scholar]
  • Le, H., L.Liu, F.Ding, Z.Ren, Y.Chen, et al., Observations and modeling of the ionospheric behaviors over the east Asia zone during the 22 July 2009 solar eclipse, J. Geophys. Res., 115, A10313, 2010, DOI: 10.1029/2010JA015609. [CrossRef] [Google Scholar]
  • Liu, J.Y., C.C.Hsiao, L.C.Tsai, C.H.Liu, F.S.Kuo, H.Y.Lue, and C.M.Huang. Vertical phase and group velocities of internal gravity waves derived from ionograms during the solar eclipse of 24 October 1995. J. Atmos. Sol. Terr. Phys., 60, 1679–1686, 1998. [CrossRef] [Google Scholar]
  • Mueller-Wodarg, I.C.F., A.D.Aylward, and M.Lockwood. Effects of a mid-latitude solar eclipse on the thermosphere and ionosphere: a modelling study. Geophys. Res. Lett., 25, 3787–3790, 1998. [CrossRef] [Google Scholar]
  • Noll, C.E. The Crustal Dynamics Data Information System a resource to support scientific analysis using space geodesy. Adv. Space Res., 45, 421–1440, 2010. [Google Scholar]
  • Pal, S., S.K.Chakrabarti, and S.K.Mondal. Modeling of sub-ionospheric VLF signal perturbations associated with total solar eclipse, 2009 in Indian subcontinent. Adv. Space Res., 50, 196–204, 2012. [CrossRef] [Google Scholar]
  • Pitout, F., P.L.Blelly, and D.Alcaydé. High-latitude ionospheric response to the solar eclipse of 1 August 2008: EISCAT observations and TRANSCAR simulation. J. Atmos. Sol. Terr. Phys., 105–106, 336–349, 2013. [Google Scholar]
  • Rashid, Z.A.A., M.A.Momani, S.Sulaiman, M.A.M.Ali, B.Yatim, G.Fraser, and N.Sato. GPS ionospheric TEC measurement during the 23rd November 2003 total solar eclipse at Scott Base Antarctica. J. Atmos. Sol. Terr. Phys., 68, 1219–1236, 2006. [CrossRef] [Google Scholar]
  • Reinisch, B.W., and I.A.Galkin. Global Ionospheric Radio Observatory (GIRO). Earth, Planets and Space, 63 (4), 377–381, 2011, DOI: 10.5047/eps.2011.03.001. [Google Scholar]
  • Tsai, H.F., and J.Y.Liu. Ionospheric total electron content response to solar eclipses. J. Geophys. Res., 104 (A6), 12657–12668, 1999. [CrossRef] [Google Scholar]
  • Verhulst, T.G.W., D.Sapundjiev, and S.Stankov. High-resolution ionospheric observations and modeling over Belgium during the solar eclipse of 20 March 2015 including first results of ionospheric tilt and plasma drift measurements. Adv. Space Res., 57, 2407–2419, 2016, DOI: 10.1016/j.asr.2016.03.009. [CrossRef] [Google Scholar]
  • Wenzel, D., N.Jakowski, J.Berdermann, C.Mayer, C.Valladares, and B.Heber. Global Ionospheric Flare Detection System (GIFDS). J. Atmos. Sol. Terr. Phys., 138–139, 233–242, 2016. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.