Open Access
Issue
J. Space Weather Space Clim.
Volume 7, 2017
Article Number A5
Number of page(s) 13
DOI https://doi.org/10.1051/swsc/2017004
Published online 27 February 2017
  • Abarbanel, H.D., R. Brown, J.J. Sidorowich, and L.S. Tsimring. The analysis of observed chaotic data in physical systems. Rev. Mod. Phys., 65 (4), 1331, 1993. [NASA ADS] [CrossRef]
  • Baker, D., and S. Kanekal. Solar cycle changes, geomagnetic variations, and energetic particle properties in the inner magnetosphere. J. Atmos. Sol. Terr. Phys., 70 (2), 195–206, 2008. [CrossRef]
  • Benz, A.O. 4.1. 1.6 Radio emission of the quiet Sun. In: Solar system, 103–115, Springer, 2009. [CrossRef]
  • Charbonneau, P. Solar dynamo theory. Ann. Rev. Astr. Astrophys., 52, 251–290, 2014, DOI: 10.1146/annurev-astro-081913-040012. [NASA ADS] [CrossRef]
  • Clette, F., and L. Lefèvre. The new Sunspot Number: assembling all corrections. Sol. Phys., 291, 2629–2651, 2015, DOI: 10.1007/s11207-016-1014-y. [CrossRef]
  • Clette, F., L. Svalgaard, J.M. Vaquero, and E.W. Cliver. Revisiting the Sunspot Number. A 400-year perspective on the solar cycle. Space Sci. Rev., 186, 35–103, 2014, DOI: 10.1007/s11214-014-0074-2. [NASA ADS] [CrossRef]
  • Cliver, E., F. Clette, and L. Svalgaard. Recalibrating the sunspot number (SSN): the SSN workshops. Cent. Eur. Astrophys. Bull., 37 (2), 401–416, 2013.
  • Cliver, E., F. Clette, L. Svalgaard, and J. Vaquero. Recalibrating the Sunspot Number (SN): the 3rd and 4th SN workshops. Cent. Eur. Astrophys. Bull., 39, 1–19, 2015.
  • Consolini, G., R. Tozzi, and P. de Michelis. Complexity in the sunspot cycle. A&A, 506, 1381–1391, 2009, DOI: 10.1051/0004-6361/200811074. [CrossRef] [EDP Sciences]
  • Deng, L. Nonlinear dynamics recognition in solar time series based on recurrence plot techniques. In: Information Science and Control Engineering (ICISCE), 2015 2nd International Conference on, IEEE, 843–847, 2015.
  • Deng, L., B. Li, Y. Zheng, and X. Cheng. Relative phase analyses of 10.7 cm solar radio flux with sunspot numbers. New Astron., 23, 1–5, 2013. [CrossRef]
  • Dudok de Wit, T. A method for filling gaps in solar irradiance and solar proxy data. A&A, 533, A29, 2011. [CrossRef] [EDP Sciences]
  • Eckmann, J.P., S.O. Kamphorst, and D. Ruelle. Recurrence plots of dynamical systems. Europhys. Lett., 4 (9), 973, 1987. [NASA ADS] [CrossRef]
  • Ermolli, I., K. Shibasaki, A. Tlatov, and L. van Driel-Gesztelyi. Solar Cycle Indices from the photosphere to the corona: measurements and underlying physics. Space Sci. Rev., 186, 105–135, 2014. [NASA ADS] [CrossRef]
  • Fredkin, D.R., and J.A. Rice. Method of false nearest neighbors. A cautionary note. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, 51 (4), 2950, 1995. [CrossRef]
  • Gao, P.X. Long-term trend of sunspot numbers. Astrophys. J., 830 (2), 140, 2016, URL http://stacks.iop.org/0004-637X/830/i=2/a=140. [CrossRef]
  • Ghosh, O., and T. Chatterjee. On the signature of chaotic dynamics in 10.7 cm daily solar radio flux. Sol. Phys., 290 (11), 3319–3330, 2015. [CrossRef]
  • Hanslmeier, A., and R. Brajša. The chaotic solar cycle. I. Analysis of cosmogenic 14C data. 509, A5, 2010, DOI: 10.1051/0004-6361/200913095.
  • Hanslmeier, A., R. Brajša, J. Čalogović, B. Vršnak, D. Ruždjak, F. Steinhilber, C.L. MacLeod, Ž. Ivezić, and I. Skokić. The chaotic solar cycle. II. Analysis of cosmogenic 10Be data. A&A, 550, A6, 2013, DOI: 10.1051/0004-6361/201015215. [NASA ADS] [CrossRef] [EDP Sciences]
  • Hapgood, M. Astrophysics: prepare for the coming space weather storm. Nature, 484 (7394), 311–313, 2012.
  • Hathaway, D.H. The solar cycle. Living Rev. Sol. Phys., 7, 1, 2010, DOI: 10.12942/lrsp-2010-1. [NASA ADS] [CrossRef]
  • Hathaway, D.H., and R.M. Wilson. What the sunspot record tells us about space climate. Sol. Phys., 224, 5–19, 2004. [NASA ADS] [CrossRef]
  • Huang, N.E., Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.C. Yen, C.C. Tung, and H.H. Liu. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. of Lon. A, 454 (1971), 903–995, 1998, DOI: 10.1098/rspa.1998.0193. [NASA ADS] [CrossRef] [MathSciNet]
  • Iwanski, J.S., and E. Bradley. Recurrence plots of experimental data: to embed or not to embed? Chaos, 8 (4), 861–871, 1998. [CrossRef]
  • Jones, G.S., M. Lockwood, and P.A. Stott. What influence will future solar activity changes over the 21st century have on projected global near-surface temperature changes? J. Geophys. Res. [Atmos.] (1984–2012), 117, D5, 2012, DOI: 10.1029/2011JD017013.
  • Kac, M. On the notion of recurrence in discrete stochastic processes. Bull. Amer. Math. Soc., 53 (10), 1002–1010, 1947. [CrossRef] [MathSciNet]
  • Karak, B.B., J. Jiang, M.S. Miesch, P. Charbonneau, and A.R. Choudhuri. Flux transport dynamos: from kinematics to dynamics. Space Sci. Rev., 186, 561–602, 2014, DOI: 10.1007/s11214-014-0099-6. [NASA ADS] [CrossRef]
  • Kennel, M.B., R. Brown, and H.D. Abarbanel. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A: At. Mol. Opt. Phys., 45, 3403, 1992. [NASA ADS] [CrossRef] [PubMed]
  • Lefèvre, L., and F. Clette. Survey and merging of sunspot catalogs. Sol. Phys., 289 (2), 545–561, 2014. [CrossRef]
  • Li, Q. Periodicity and hemispheric phase relationship in high-latitude solar activity. Sol. Phys., 249 (1), 135–145, 2008. [CrossRef]
  • Ma, H.-G., and C.-Z. Han. Selection of embedding dimension and delay time in phase space reconstruction. Front. Electr. Electron. Eng. Chin., 1 (1), 111–114, 2006. [CrossRef]
  • Marwan, N. Encounters with neighbours: current developments of concepts based on recurrence plots and their applications, University of Potsdam, 2003.
  • Marwan, N. How to avoid potential pitfalls in recurrence plot based data analysis. Int. J. Bifurcation Chaos, 21 (04), 1003–1017, 2011. [CrossRef]
  • Marwan, N., M. CarmenRomano, M. Thiel, and J. Kurths. Recurrence plots for the analysis of complex systems. Phys. Rep., 438 (5), 237–329, 2007. [NASA ADS] [CrossRef] [MathSciNet]
  • Marwan, N., and J. Kurths. Cross recurrence plots and their applications. In: C.V. Benton, Editor. Mathematical physics research at the cutting edge, , Nova Science Publisher, Inc., 101–139, ISBN 1-59033-939-8, 2004.
  • Marwan, N., S. Schinkel, and J. Kurths. Recurrence plots 25 years later gaining confidence in dynamical transitions. Europhys. Lett., 101 (2), 20007, 2013. [CrossRef] [EDP Sciences]
  • Pastorek, L., and Z. Vörös. Nonlinear analysis of solar cycle variability. In: A. Wilson, Editor. Solar variability: from core to outer frontiers, vol. 506, ESA Special Publication, Noordwijk 197–200, 2002.
  • Poincaré, H. Sur le probleme des trois corps et les équations de la dynamique. Acta Math., 13 (1), A3–A270, 1890.
  • Rhodes, C., and M. Morari. False-nearest-neighbors algorithm and noise-corrupted time series. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, 55 (5), 6162, 1997. [NASA ADS] [CrossRef]
  • Schinkel, S., O. Dimigen, and N. Marwan. Selection of recurrence threshold for signal detection. Euro. Phys. J. Special Top., 164 (1), 45–53, 2008. [CrossRef] [EDP Sciences]
  • Schrijver, C.J. Socio-economic hazards and impacts of space weather: the important range between mild and extreme. Space Weather, 13, 524–528, 2015. [CrossRef]
  • Sello, S. Solar cycle forecasting: a nonlinear dynamics approach. A&A, 377 (1), 312–320, 2001. [NASA ADS] [CrossRef] [EDP Sciences]
  • SILSO World Data Center. The international sunspot number. International Sunspot Number Monthly Bulletin and Online Catalogue, 1949–2015.
  • Sparavigna, A. Recurrence plots of sunspots, solar flux and irradiance. 2008, arXiv preprint arXiv:0804.1941.
  • Sullivan, W.T. The early years of radio astronomy: reflections fifty years after Jansky’s discovery. Cambridge University Press, Cambridge, 2005.
  • Svalgaard, L., and H.S. Hudson. The solar microwave flux and the sunspot number. In: SOHO-23: Understanding a Peculiar Solar Minimum, Astronomical Society of the Pacific Conference Series, S.R., Cranmer, J.T. Hoeksema, and J.L. Kohl, 428, 325, 2010, http://adsabs.harvard.edu/abs/2010ASPC.428.325S.
  • Tapping, K. The 10.7 cm solar radio flux (F10. 7). Space Weather, 11 (7), 394–406, 2013. [NASA ADS] [CrossRef]
  • Tapping, K.F., and J.J. Valdés. Did the sun change its behaviour during the decline of cycle 23 and into cycle 24? Sol. Phys., 272, 337–350, 2011, DOI: 10.1007/s11207-011-9827-1. [NASA ADS] [CrossRef]
  • Temmer, M., J. Rybák, P. Bendk, A. Veronig, F. Vogler, W. Otruba, W. Pötzi, and A. Hanslmeier. Hemispheric sunspot numbers {Rn} and {Rs} from 1945–2004: catalogue and N-S asymmetry analysis for solar cycles 18–23. A&A, 447, 735–743, 2006, DOI: 10.1051/0004-6361:20054060. [NASA ADS] [CrossRef] [EDP Sciences]
  • Thiel, M., M.C. Romano, and J. Kurths. How much information is contained in a recurrence plot? Phys. Lett. A, 330 (5), 343–349, 2004. [CrossRef] [MathSciNet]
  • Trulla, L., A. Giuliani, J. Zbilut, and C. Webber Jr. Recurrence quantification analysis of the logistic equation with transients. Phys. Lett. A, 223 (4), 255–260, 1996. [CrossRef]
  • Webber Jr., C.L., and J.P. Zbilut. Recurrence quantification analysis of nonlinear dynamical systems. In: M.A., Riley, and G. Van Orden. Editors, Tutorials in Contemporary Nonlinear Methods for the Behavioral Sciences, 26–94, 2005, Retrieved December 1, 2004 http://www.nsf.gov/sbe/bcs/pac/nmbs/nmbs.pdf.
  • Wilson, R.M. On the level of skill in predicting maximum sunspot number – a comparative study of single variate and bivariate precursor techniques. Sol. Phys., 125, 143–155, 1990, DOI: 10.1007/BF00154784. [NASA ADS] [CrossRef]
  • Wolf, R. Universal sunspot numbers: sunspot observations in the second part of the year 1850. Mitt. Nat. Ges. Bern, 1, 89–95, 1851.
  • Zbilut, J.P., and C.L. Webber Jr. Recurrence quantification analysis. In: R., Wolf. Editor, Wiley encyclopedia of biomedical engineering, John Wiley & Sons, Hoboken, 2006, DOI: 10.1002/9780471740360.edb1355
  • Zbilut, J. P, and C. L. Webber Jr. Embeddings and delays as derived from quantification of recurrence plots. Phys. Lett. A, 171 (3), 199–203, 1992. [CrossRef]
  • Zhang, Q. A nonlinear prediction of the smoothed monthly sunspot numbers. A&A, 310, 646–650, 1996.
  • Zhou, S., Y. Feng, W.-Y. Wu, Y. Li, and J. Liu. Low-dimensional chaos and fractal properties of long-term sunspot activity. Res. Astron. Astrophys., 14 (1), 104, 2014. [NASA ADS] [CrossRef]
  • Zolotova, N., and D. Ponyavin. Synchronization in sunspot indices in the two hemispheres. Sol. Phys., 243 (2), 193–203, 2007. [NASA ADS] [CrossRef]
  • Zolotova, N., D. Ponyavin, R. Arlt, and I. Tuominen. Secular variation of hemispheric phase differences in the solar cycle. Astron. Nachr., 331 (8), 765–771, 2010. [NASA ADS] [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.