Open Access
J. Space Weather Space Clim.
Volume 7, 2017
Article Number A5
Number of page(s) 13
Published online 27 February 2017
  • Abarbanel, H.D., R. Brown, J.J. Sidorowich, and L.S. Tsimring. The analysis of observed chaotic data in physical systems. Rev. Mod. Phys., 65 (4), 1331, 1993. [NASA ADS] [CrossRef] [Google Scholar]
  • Baker, D., and S. Kanekal. Solar cycle changes, geomagnetic variations, and energetic particle properties in the inner magnetosphere. J. Atmos. Sol. Terr. Phys., 70 (2), 195–206, 2008. [CrossRef] [Google Scholar]
  • Benz, A.O. 4.1. 1.6 Radio emission of the quiet Sun. In: Solar system, 103–115, Springer, 2009. [CrossRef] [Google Scholar]
  • Charbonneau, P. Solar dynamo theory. Ann. Rev. Astr. Astrophys., 52, 251–290, 2014, DOI: 10.1146/annurev-astro-081913-040012. [Google Scholar]
  • Clette, F., and L. Lefèvre. The new Sunspot Number: assembling all corrections. Sol. Phys., 291, 2629–2651, 2015, DOI: 10.1007/s11207-016-1014-y. [Google Scholar]
  • Clette, F., L. Svalgaard, J.M. Vaquero, and E.W. Cliver. Revisiting the Sunspot Number. A 400-year perspective on the solar cycle. Space Sci. Rev., 186, 35–103, 2014, DOI: 10.1007/s11214-014-0074-2. [NASA ADS] [CrossRef] [Google Scholar]
  • Cliver, E., F. Clette, and L. Svalgaard. Recalibrating the sunspot number (SSN): the SSN workshops. Cent. Eur. Astrophys. Bull., 37 (2), 401–416, 2013. [Google Scholar]
  • Cliver, E., F. Clette, L. Svalgaard, and J. Vaquero. Recalibrating the Sunspot Number (SN): the 3rd and 4th SN workshops. Cent. Eur. Astrophys. Bull., 39, 1–19, 2015. [Google Scholar]
  • Consolini, G., R. Tozzi, and P. de Michelis. Complexity in the sunspot cycle. A&A, 506, 1381–1391, 2009, DOI: 10.1051/0004-6361/200811074. [CrossRef] [EDP Sciences] [Google Scholar]
  • Deng, L. Nonlinear dynamics recognition in solar time series based on recurrence plot techniques. In: Information Science and Control Engineering (ICISCE), 2015 2nd International Conference on, IEEE, 843–847, 2015. [Google Scholar]
  • Deng, L., B. Li, Y. Zheng, and X. Cheng. Relative phase analyses of 10.7 cm solar radio flux with sunspot numbers. New Astron., 23, 1–5, 2013. [CrossRef] [Google Scholar]
  • Dudok de Wit, T. A method for filling gaps in solar irradiance and solar proxy data. A&A, 533, A29, 2011. [Google Scholar]
  • Eckmann, J.P., S.O. Kamphorst, and D. Ruelle. Recurrence plots of dynamical systems. Europhys. Lett., 4 (9), 973, 1987. [Google Scholar]
  • Ermolli, I., K. Shibasaki, A. Tlatov, and L. van Driel-Gesztelyi. Solar Cycle Indices from the photosphere to the corona: measurements and underlying physics. Space Sci. Rev., 186, 105–135, 2014. [Google Scholar]
  • Fredkin, D.R., and J.A. Rice. Method of false nearest neighbors. A cautionary note. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, 51 (4), 2950, 1995. [CrossRef] [Google Scholar]
  • Gao, P.X. Long-term trend of sunspot numbers. Astrophys. J., 830 (2), 140, 2016, URL [CrossRef] [Google Scholar]
  • Ghosh, O., and T. Chatterjee. On the signature of chaotic dynamics in 10.7 cm daily solar radio flux. Sol. Phys., 290 (11), 3319–3330, 2015. [CrossRef] [Google Scholar]
  • Hanslmeier, A., and R. Brajša. The chaotic solar cycle. I. Analysis of cosmogenic 14C data. 509, A5, 2010, DOI: 10.1051/0004-6361/200913095. [Google Scholar]
  • Hanslmeier, A., R. Brajša, J. Čalogović, B. Vršnak, D. Ruždjak, F. Steinhilber, C.L. MacLeod, Ž. Ivezić, and I. Skokić. The chaotic solar cycle. II. Analysis of cosmogenic 10Be data. A&A, 550, A6, 2013, DOI: 10.1051/0004-6361/201015215. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Hapgood, M. Astrophysics: prepare for the coming space weather storm. Nature, 484 (7394), 311–313, 2012. [Google Scholar]
  • Hathaway, D.H. The solar cycle. Living Rev. Sol. Phys., 7, 1, 2010, DOI: 10.12942/lrsp-2010-1. [Google Scholar]
  • Hathaway, D.H., and R.M. Wilson. What the sunspot record tells us about space climate. Sol. Phys., 224, 5–19, 2004. [Google Scholar]
  • Huang, N.E., Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.C. Yen, C.C. Tung, and H.H. Liu. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. of Lon. A, 454 (1971), 903–995, 1998, DOI: 10.1098/rspa.1998.0193. [CrossRef] [Google Scholar]
  • Iwanski, J.S., and E. Bradley. Recurrence plots of experimental data: to embed or not to embed? Chaos, 8 (4), 861–871, 1998. [CrossRef] [Google Scholar]
  • Jones, G.S., M. Lockwood, and P.A. Stott. What influence will future solar activity changes over the 21st century have on projected global near-surface temperature changes? J. Geophys. Res. [Atmos.] (1984–2012), 117, D5, 2012, DOI: 10.1029/2011JD017013. [Google Scholar]
  • Kac, M. On the notion of recurrence in discrete stochastic processes. Bull. Amer. Math. Soc., 53 (10), 1002–1010, 1947. [CrossRef] [MathSciNet] [Google Scholar]
  • Karak, B.B., J. Jiang, M.S. Miesch, P. Charbonneau, and A.R. Choudhuri. Flux transport dynamos: from kinematics to dynamics. Space Sci. Rev., 186, 561–602, 2014, DOI: 10.1007/s11214-014-0099-6. [NASA ADS] [CrossRef] [Google Scholar]
  • Kennel, M.B., R. Brown, and H.D. Abarbanel. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A: At. Mol. Opt. Phys., 45, 3403, 1992. [Google Scholar]
  • Lefèvre, L., and F. Clette. Survey and merging of sunspot catalogs. Sol. Phys., 289 (2), 545–561, 2014. [CrossRef] [Google Scholar]
  • Li, Q. Periodicity and hemispheric phase relationship in high-latitude solar activity. Sol. Phys., 249 (1), 135–145, 2008. [CrossRef] [Google Scholar]
  • Ma, H.-G., and C.-Z. Han. Selection of embedding dimension and delay time in phase space reconstruction. Front. Electr. Electron. Eng. Chin., 1 (1), 111–114, 2006. [CrossRef] [Google Scholar]
  • Marwan, N. Encounters with neighbours: current developments of concepts based on recurrence plots and their applications, University of Potsdam, 2003. [Google Scholar]
  • Marwan, N. How to avoid potential pitfalls in recurrence plot based data analysis. Int. J. Bifurcation Chaos, 21 (04), 1003–1017, 2011. [CrossRef] [Google Scholar]
  • Marwan, N., M. CarmenRomano, M. Thiel, and J. Kurths. Recurrence plots for the analysis of complex systems. Phys. Rep., 438 (5), 237–329, 2007. [Google Scholar]
  • Marwan, N., and J. Kurths. Cross recurrence plots and their applications. In: C.V. Benton, Editor. Mathematical physics research at the cutting edge, , Nova Science Publisher, Inc., 101–139, ISBN 1-59033-939-8, 2004. [Google Scholar]
  • Marwan, N., S. Schinkel, and J. Kurths. Recurrence plots 25 years later gaining confidence in dynamical transitions. Europhys. Lett., 101 (2), 20007, 2013. [CrossRef] [EDP Sciences] [Google Scholar]
  • Pastorek, L., and Z. Vörös. Nonlinear analysis of solar cycle variability. In: A. Wilson, Editor. Solar variability: from core to outer frontiers, vol. 506, ESA Special Publication, Noordwijk 197–200, 2002. [Google Scholar]
  • Poincaré, H. Sur le probleme des trois corps et les équations de la dynamique. Acta Math., 13 (1), A3–A270, 1890. [Google Scholar]
  • Rhodes, C., and M. Morari. False-nearest-neighbors algorithm and noise-corrupted time series. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, 55 (5), 6162, 1997. [NASA ADS] [CrossRef] [Google Scholar]
  • Schinkel, S., O. Dimigen, and N. Marwan. Selection of recurrence threshold for signal detection. Euro. Phys. J. Special Top., 164 (1), 45–53, 2008. [CrossRef] [EDP Sciences] [Google Scholar]
  • Schrijver, C.J. Socio-economic hazards and impacts of space weather: the important range between mild and extreme. Space Weather, 13, 524–528, 2015. [CrossRef] [Google Scholar]
  • Sello, S. Solar cycle forecasting: a nonlinear dynamics approach. A&A, 377 (1), 312–320, 2001. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • SILSO World Data Center. The international sunspot number. International Sunspot Number Monthly Bulletin and Online Catalogue, 1949–2015. [Google Scholar]
  • Sparavigna, A. Recurrence plots of sunspots, solar flux and irradiance. 2008, arXiv preprint arXiv:0804.1941. [Google Scholar]
  • Sullivan, W.T. The early years of radio astronomy: reflections fifty years after Jansky’s discovery. Cambridge University Press, Cambridge, 2005. [Google Scholar]
  • Svalgaard, L., and H.S. Hudson. The solar microwave flux and the sunspot number. In: SOHO-23: Understanding a Peculiar Solar Minimum, Astronomical Society of the Pacific Conference Series, S.R., Cranmer, J.T. Hoeksema, and J.L. Kohl, 428, 325, 2010, [Google Scholar]
  • Tapping, K. The 10.7 cm solar radio flux (F10. 7). Space Weather, 11 (7), 394–406, 2013. [NASA ADS] [CrossRef] [Google Scholar]
  • Tapping, K.F., and J.J. Valdés. Did the sun change its behaviour during the decline of cycle 23 and into cycle 24? Sol. Phys., 272, 337–350, 2011, DOI: 10.1007/s11207-011-9827-1. [NASA ADS] [CrossRef] [Google Scholar]
  • Temmer, M., J. Rybák, P. Bendk, A. Veronig, F. Vogler, W. Otruba, W. Pötzi, and A. Hanslmeier. Hemispheric sunspot numbers {Rn} and {Rs} from 1945–2004: catalogue and N-S asymmetry analysis for solar cycles 18–23. A&A, 447, 735–743, 2006, DOI: 10.1051/0004-6361:20054060. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Thiel, M., M.C. Romano, and J. Kurths. How much information is contained in a recurrence plot? Phys. Lett. A, 330 (5), 343–349, 2004. [CrossRef] [MathSciNet] [Google Scholar]
  • Trulla, L., A. Giuliani, J. Zbilut, and C. Webber Jr. Recurrence quantification analysis of the logistic equation with transients. Phys. Lett. A, 223 (4), 255–260, 1996. [CrossRef] [Google Scholar]
  • Webber Jr., C.L., and J.P. Zbilut. Recurrence quantification analysis of nonlinear dynamical systems. In: M.A., Riley, and G. Van Orden. Editors, Tutorials in Contemporary Nonlinear Methods for the Behavioral Sciences, 26–94, 2005, Retrieved December 1, 2004 [Google Scholar]
  • Wilson, R.M. On the level of skill in predicting maximum sunspot number – a comparative study of single variate and bivariate precursor techniques. Sol. Phys., 125, 143–155, 1990, DOI: 10.1007/BF00154784. [NASA ADS] [CrossRef] [Google Scholar]
  • Wolf, R. Universal sunspot numbers: sunspot observations in the second part of the year 1850. Mitt. Nat. Ges. Bern, 1, 89–95, 1851. [Google Scholar]
  • Zbilut, J.P., and C.L. Webber Jr. Recurrence quantification analysis. In: R., Wolf. Editor, Wiley encyclopedia of biomedical engineering, John Wiley & Sons, Hoboken, 2006, DOI: 10.1002/9780471740360.edb1355 [Google Scholar]
  • Zbilut, J. P, and C. L. Webber Jr. Embeddings and delays as derived from quantification of recurrence plots. Phys. Lett. A, 171 (3), 199–203, 1992. [CrossRef] [Google Scholar]
  • Zhang, Q. A nonlinear prediction of the smoothed monthly sunspot numbers. A&A, 310, 646–650, 1996. [Google Scholar]
  • Zhou, S., Y. Feng, W.-Y. Wu, Y. Li, and J. Liu. Low-dimensional chaos and fractal properties of long-term sunspot activity. Res. Astron. Astrophys., 14 (1), 104, 2014. [Google Scholar]
  • Zolotova, N., and D. Ponyavin. Synchronization in sunspot indices in the two hemispheres. Sol. Phys., 243 (2), 193–203, 2007. [Google Scholar]
  • Zolotova, N., D. Ponyavin, R. Arlt, and I. Tuominen. Secular variation of hemispheric phase differences in the solar cycle. Astron. Nachr., 331 (8), 765–771, 2010. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.