Open Access
Issue |
J. Space Weather Space Clim.
Volume 7, 2017
Brightness Variations of the Sun and Sun-like Stars and Resulting Influences on their Environments
|
|
---|---|---|
Article Number | A11 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/swsc/2017009 | |
Published online | 19 April 2017 |
- Austin, J., K. Tourpali, E. Rozanov, H. Akiyoshi, S. Bekki, et al. Coupled chemistry climate model simulations of the solar cycle in ozone and temperature. J. Geophys. Res., 113, D11306, 2008, DOI: 10.1029/2007JD009391. [Google Scholar]
- Ball, W.T., Y.C. Unruh, N.A. Krivova, S. Solanki, and J.W. Harder. Solar irradiance variability: a six-year comparison between SORCE observations and the SATIRE model. A&A, 530, A71, 2011, DOI: 10.1051/0004-6361/20116189. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Ball, W.T., J.D. Haigh, E.V. Rozanov, A. Kuchar, T. Sukhodolov, F. Tummon, A.V. Shapiro, and W. Schmutz. High solar cycle spectral variations inconsistent with stratospheric ozone observations. Nature, 9 (3), 206–209, 2016, DOI: 10.1038/ngeo2640. [Google Scholar]
- Cahalan, R.F., G. Wen, J.W. Harder, and P. Pilewskie. Temperature responses to spectral solar variability on decadal time scales. Geophys. Res. Lett., 37, L07705, 2010, DOI: 10.1029/2009GL041898. [CrossRef] [Google Scholar]
- Douglass, D.H., and B.D. Clader. Climate sensitivity of the Earth to solar irradiance. Geophys. Res. Lett., 29, 1786, 2002, DOI: 10.1029/2002GL015345. [CrossRef] [Google Scholar]
- Dhomse, S.S., M.P. Chipperfield, W. Feng, W.T. Ball, Y.C. Unruh, D.J. Haigh, N.A. Krivova, S.K. Solanki, and A.K. Smith. Stratospheric O3 changes during 2001–2010: the small role of solar flux variations in a chemical transport model. Atmos. Chem. Phys., 13, 10113–10123, 2013, DOI: 10.5194/acp-13-10113-2013. [CrossRef] [Google Scholar]
- Ermolli, I., K. Matthes, T. Dudok deWit, N.A. Krivova, K. Tourpali, et al. Recent variability of the solar spectral irradiance and its impact on climate modeling. Atmos. Chem. Phys., 13, 3945–3977, 2013, DOI: 10.5194/acp-13-3945-2013. [Google Scholar]
- Fontenla, J.M., J. Harder, W. Livingston, M. Snow, and T. Woods. High-resolutoin solar irradiance from extreme ultraviolet to far infrared. J. Geophys. Res., 116, D20108, 2011, DOI: 10.1029/211JD016032. [Google Scholar]
- Frame, T., and L.J. Gray. The 11-yr cycle in ERA-40 data: an update to 2008. J. Climate, 23, 2213–2222, 2010, DOI: 10.1175/2009JCLI3150.1. [Google Scholar]
- Geer, A.J., W.A. Lahoz, D.R. Jackson, D. Cariolle, and J.P. McCormack. Evaluation of linear ozone photochemistry parameterization in a stratosphere-troposphere data assimilation system. Atmos. Chem. Phys., 7, 939–957, 2007, DOI: 19.5194/acp-7-939-2007. [CrossRef] [Google Scholar]
- Gray, L.J., J. Beer, M. Geller, J.D. Haigh, M. Lockwood, et al. Solar influence on climate. Rev. Geophys., 48, RG4001, 2010, DOI: 10.1029/2009GR000282. [NASA ADS] [CrossRef] [Google Scholar]
- Gray, L.J., A.A. Scaife, D.M. Mitchell, S. Osprey, S. Ineson, et al. A lagged response to the 11 year solar cycle in observed winter Atlantic/European weather patterns. J. Geophys. Res. Atmos., 118 (13), 405–13420, 2013, DOI: 10.1002/2013JD020062. [CrossRef] [Google Scholar]
- Haigh, J.D. The impact of solar variability on climate. Science, 272, 981–984, 1996, DOI: 10.1126/science.272.5264.981. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Haigh, J.D. The effects of solar variability on the Earth’s climate. Philos. Trans. R. Soc. London, Ser. A, 361, 95–111, 2003, DOI: 10.1098/rsta.2002.1111. [Google Scholar]
- Haigh, J.D., A.R. Winning, R. Toumi, and J.W. Harder. An influence of spectral solar variations on radiative forcing of climate. Nature, 467, 696–699, 2010, DOI: 10.1038/nature09426. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Harder, J.W., J.M. Fontenla, P. Pilewskie, E.C. Richard, and T.N. Woods. Trends in solar spectral irradiance variability in the visible and infrared. Geophys. Res. Lett., 36, L07801, 2009, DOI: 10.1029/2008GL036797. [Google Scholar]
- Hansen, J., G. Russell, D. Rind, P. Stone, A. Lacis, S. Lebedeff, R. Ruedy, and L. Travis. Efficient three-dimensional global models for climate studies: models I and II. Mon. Weather Rev., 111, 609–662, 1983, DOI: 10.1175/1520-0493(1983)111<0609:ETDGMF>2.0.CO;2. [CrossRef] [Google Scholar]
- Hood, L.L., S. Misios, D.M. Mitchell, E. Rozanov, L.J. Gray, et al. Solar signals in CMIP-5 simulations: the ozone response. Q. J. R. Meteorol. Soc., 141, 2670–2689, 2015, DOI: 10.1002/qj.2553. [Google Scholar]
- Ineson, S., A.A. Scaife, J.R. Knight, J.C. Manners, N.J. Dunstone, L.J. Gray, and J.D. Haigh. Solar forcing of winter climate variability in the Northern Hemisphere. Nat. Geosci., 4, 753–757, 2011, DOI: 10.1038/NGEO1282. [Google Scholar]
- Kidston, J., A.A. Scaife, S.C. Hardiman, D.M. Mitchell, N. Butchart, M.P. Baldwin, and L.J. Gray. Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci., 8, 433–440, 2015, DOI: 10.1038/ngeo2424. [Google Scholar]
- Kodera, K., and Y. Kuroda. Dynamical response to the solar cycle: winter stratopause and lower stratosphere. J. Geophys Res., 107 (D24), 4749, 2002,DOI: 10.1029/2002JD002224. [Google Scholar]
- Kopp, G., and J.L. Lean. A new, lower value of total solar irradiance: evidence and climate significance. Geophys. Res. Lett., 38, L01706, 2011, DOI: 10.1029/2010GL045777. [Google Scholar]
- Kopp, G. An assessment of the solar irradiance record for climate studies. J. Space Weather Space Clim., 4, A14, 2014, DOI: 10.105/swsc/2014012. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Kopp, G. Magnitudes and timescales of total solar irradiance variability. J. Space Weather Space Clim., 6, A30, 2016, DOI: 10.1051/swsc/2016025. [Google Scholar]
- Krivova, N.A., L.E.A. Vieira, and S.K. Solanki. Reconstruction of solar spectral irradiance since the Maunder Minimum. J. Geophys. Res., 115, A12112, 2010, DOI: 10.1029/2010JA015431. [NASA ADS] [CrossRef] [Google Scholar]
- Lacis, A.A., and V. Oinas. A description of the correlated k distributed method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres. J. Geophys. Res., 96, 9027–9063, 1991, DOI: 10.1029/90JD01945. [NASA ADS] [CrossRef] [Google Scholar]
- Lacis, A.A., J.E. Hansen, G.L. Russell, V. Oinas, and J. Jonas. The role of long-lived greenhouse gases as principal LW control knob that governs the global surface temperature for past and future climate change. Tellus B, 65, 19734, 2013, DOI: 10.3402/tellusb.v65i0.19734. [CrossRef] [Google Scholar]
- Lean, J. Evolution of the Sun’s spectral irradiance since the Maunder Minimum. Geophys. Res. Lett., 27 (16), 2425–2428, 2000, DOI: 10.1029/2000GL000043. [CrossRef] [Google Scholar]
- Lean, J., and M.T. DeLand. How does Sun’s spectrum vary? J. Climate, 25 (7), 2555–2560, 2012, DOI: 10.1175/JCLI-D-11-00571.1. [NASA ADS] [CrossRef] [Google Scholar]
- Lee, J.N., R.F. Cahalan, and D.L. Wu. Solar rotational modulations of spectral irradiance and correlations with the variability of total solar irradiance. J. Space Weather Space Clim., 6, A33, 2016, DOI: 10.1051/swsc/2016028. [CrossRef] [EDP Sciences] [Google Scholar]
- Matthes, K., Y. Kuroda, K. Kodera, and U. Langematz. Transfer of the solar signal from the stratosphere to the troposphere: northern winter. J. Geophys. Res., 111, D06108, 2006, DOI: 10.1029/2005JD006283. [CrossRef] [Google Scholar]
- McClintock, W.E., G.J. Rottman, and T.N. Woods. Solar-Stellar Irradiance Comparison Experiment II (SOLSTICE II): instrument concept and design. Sol. Phys., 230, 225–258, 2005, DOI: 10.1007/s11207-005-7432-x. [NASA ADS] [CrossRef] [Google Scholar]
- McLinden, C.A., S.C. Olsen, B. Hannegan, O. Wild, M.J. Prather, and J. Sundet. Stratospheric ozone in 3-D models: a simple chemistry and the cross-tropopause flux. J. Geophys. Res., 105, 14,653–14,666, 2000, DOI: 10.1029/2000JD90014. [CrossRef] [Google Scholar]
- Meehl, G.A., J.M. Arblaster, K. Matthes, F. Sassi, and H. van Loon. Amplifying the Pacific climate system response to a small 11 year solar cycle forcing. Science, 325, 1114–1118, 2009, DOI: 10.1126/science.1172872. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Merkel, A.W., J.W. Harder, D.R. Marsh, A.K. Smith, J.M. Fontenla, and T.N. Woods. The impact of solar spectral irradiance variability on middle atmospheric ozone. Geophys. Res. Lett., 38, L13802, 2011, DOI: 10.1029/ 2011GL047561. [Google Scholar]
- Misios, S., D.M. Mitchell, L.J. Gray, K. Tourpali, K. Matthes, et al. Solar signals in CMIP-5 simulations: effects of atmosphere–ocean coupling. Q. J. R. Meteorol. Soc., 142, 928–941, 2015, DOI: 10.1002/qj.2695. [CrossRef] [Google Scholar]
- Mitchell, D., S. Misios, L.J. Gray, K. Tourpali, K. Matthes, L. Hood, H. Schmidt, G. Chiodo, R. Thieblemont, E. Rozanov, D. Shindell, and A. Krivolutsky. Solar signals in CMIP-5 simulations: the stratospheric pathway. Q. J. R. Meteorol. Soc., 141, 2390–2403, 2015, DOI: 10.1002/qj.2530. [NASA ADS] [CrossRef] [Google Scholar]
- Oberländer, S., U. Langematz, K. Matthes, M. Kunze, A. Kubin, et al. The influence of spectral solar irradiance data on stratospheric heating rates during the 11 year solar cycle. Geophys. Res. Lett., 39, L01801, 2012, DOI: 10.1029/2011GL049539. [NASA ADS] [CrossRef] [Google Scholar]
- Oinas, V., A.A. Lacis, D. Rind, D.T. Shindell, and J.E. Hansen. Radiative cooling by stratospheric water vapor: big differences in GCM results. Geophys. Res. Lett., 28, 2791–2794, 2001, DOI: 10.1029/2001GL013137. [CrossRef] [Google Scholar]
- Pawson, S., W. Steinbrecht, A.J. Charlton-Perez, M. Fujiwara, A.Yu. Karpechko, I. Petropavlovskikh, J. Urban, and M. Weber. Update on global ozone: past, present, and future, Chapter 2 In: Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project – Report No. 55, World Meteorological Organization, Geneva, Switzerland, 2014. [Google Scholar]
- Preminger, D., G. Chapman, and A. Cookson. Activity-brightness correlations for the Sun and Sun-like stars. Astrophys. J. Lett., 739, 6, 2011, DOI: 10.1088/2041-8205/739/2/L45. [Google Scholar]
- Remsberg, E.E. On the response of Halogen Occultation Experiment (HALOE) stratospheric ozone and temperature to the 11‐year solar cycle forcing. J. Geophys. Res., 113, D22304, 2008, DOI: 10.1029/2008JD010189. [CrossRef] [Google Scholar]
- Rind, D., J. Lerner, J. Perlwitz, C. McLinden, and M. Prather. Sensitivity of tracer transports and stratospheric ozone to sea surface temperature patterns in the doubled CO2 climate. J. Geophys. Res., 107 (D24), 4800, 2002, DOI: 10.1029/2002JD002483. [CrossRef] [Google Scholar]
- Rind, D., J. Lerner, J. Jonas, and C. McLinden. Effects of resolution and model physics on tracer transports in the NASA Goddard Institute for Space Studies general circulation models. J. Geophys. Res., 112, D09315, 2007, DOI: 10.1029/2006JD007476. [CrossRef] [Google Scholar]
- Rind, D., J. Lean, J. Lerner, P. Lonergan, and A. Leboissitier. Exploring the stratospheric/tropospheric response to solar forcing. J. Geophys. Res., 113, D24103, 2008, DOI: 10.1029/2008JD010114. [NASA ADS] [CrossRef] [Google Scholar]
- Rind, D., J. Lean, and J. Jonas. The impact of different absolute solar irradiance values on current climate model simulations. J. Climate, 27, 1100–1120, 2013, DOI: 10.1175/JCLI-D-13-00136.1. [CrossRef] [Google Scholar]
- Scafetta, N., and R. Willson. ACRIM total solar irradiance satellite composite validation versus TSI proxy models. Astrophys. Space Sci., 350 (2), 421–442, 2014, DOI: 10.1007/s10509-013-1775-9. [Google Scholar]
- Schmutz, W., A. Fehlmann, W. Finsterle, G. Kopp, and G. Thuillier. Radiation processes in the atmosphere and ocean (IRS2012), AIP Conf. Proc., 1531, 624–627, 2013, DOI: 10.1063/1.4804847. [Google Scholar]
- Shapiro, A.V., E.V. Rozanov, A.I. Shapiro, T.A. Egorova, J. Harder, M. Weber, A.K. Smith, W. Schmutz, and T. Peter. The role of the solar irradiance variability in the evolution of the middle atmosphere during 2004–2009. J. Geophys. Res. Atmos., 118, 3781–3793, 2013, DOI: 10.1002/jgrd.50208. [NASA ADS] [CrossRef] [Google Scholar]
- Shindell, D., D. Rind, N. Balachandran, J. Lean, and P. Lonergan. Solar cycle varibilty, ozone, and climate. Science, 284, 305–308, 1999, DOI: 10.1126/science.284.5412.305. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Solanki, S.K., N.A. Krivova, and J.D. Haigh. Solar irradiance variability and climate. Annu. Rev. Astron. Astrophys., 51, 311–351, 2013, DOI: 10.1146/annurev-astro-082812-141007. [Google Scholar]
- Swartz, W.H., R.S. Stolarski, L.D. Oman, E.L. Fleming, and C.H. Jackman. Middle atmosphere response to different descriptions of the 11-yr solar cycle in spectral irradiance in a chemistry-climate model. Atmos. Chem. Phys., 12, 5937–5948, 2012, DOI: 10.5194/acp-12-5937-2012. [CrossRef] [Google Scholar]
- Tung, K.K., and C.D. Camp. Solar cycle warming at the Earth’s surface in NCEP and ERA‐40 data: A linear discriminant analysis. J. Geophys. Res., 113, D05114, 2008, DOI: 10.1029/2007JD009164. [CrossRef] [Google Scholar]
- Unruh, Y.C., W. Ball, and N.A. Krivova. Solar irradiance models and measurements: a comparison in the 220–240 nm wavelength band. Surv. Geophys., 33, 475–481, 2012, DOI: 10.1007/s10712-011-9166-7. [Google Scholar]
- Wang, S., K. Li, T.J. Pongetti, S.P. Sander, Y.L. Yung, et al. Mid-latitude atmospheric OH responses to the most recent 11-year solar cycle. PNAS, 110, 2023–2028, 2013, DOI: 10.10.1073/pnas.1117790110. [CrossRef] [Google Scholar]
- Wen, G., R.F. Cahalan, J.D. Haigh, P. Pilewskie, L. Oreopoulos, and J.W. Harder. Reconciliation of modeled climate responses to spectral solar forcing. J. Geophys. Res. Atmos., 118, 6281–6289, 2013, DOI: 10.1002/jgrd.50506. [CrossRef] [Google Scholar]
- White, W., J. Lean, D.R. Cayan, and M.D. Dettinger. Response of global upper ocean temperature to changing solar irradiance. J. Geophys. Res. [Oceans], 102, 3255–3266, 1997, DOI: 10.1029/96JC03549. [CrossRef] [Google Scholar]
- WMO (World Meteorology Organization), Scientific assessment of ozone depletion: 2010. Global Ozone Research and Monitoring Project-Report No. 52, 516, Geneva, Switzerland, 2011. [Google Scholar]
- Yeo, K.L., N.A. Krivoav, and S.K. Solanki. Solar cycle variation in solar irradiance. Space Sci. Rev., 186, 137–167, 2014, DOI: 10.1007/s11214-014-0061-7. [NASA ADS] [CrossRef] [Google Scholar]
- Zwiers, F.W., and H. von Storch. Taking serial correlation into account in tests of the mean. J. Climate, 8, 336–351, 1995, DOI: 10.1175/1520-0442(1995)008<0336:tsciai>2.0.CO;2. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.