Issue
J. Space Weather Space Clim.
Volume 7, 2017
Brightness Variations of the Sun and Sun-like Stars and Resulting Influences on their Environments
Article Number A11
Number of page(s) 14
DOI https://doi.org/10.1051/swsc/2017009
Published online 19 April 2017
  • Austin, J., K. Tourpali, E. Rozanov, H. Akiyoshi, S. Bekki, et al. Coupled chemistry climate model simulations of the solar cycle in ozone and temperature. J. Geophys. Res., 113, D11306, 2008, DOI: 10.1029/2007JD009391. [CrossRef]
  • Ball, W.T., Y.C. Unruh, N.A. Krivova, S. Solanki, and J.W. Harder. Solar irradiance variability: a six-year comparison between SORCE observations and the SATIRE model. A&A, 530, A71, 2011, DOI: 10.1051/0004-6361/20116189. [NASA ADS] [CrossRef] [EDP Sciences]
  • Ball, W.T., J.D. Haigh, E.V. Rozanov, A. Kuchar, T. Sukhodolov, F. Tummon, A.V. Shapiro, and W. Schmutz. High solar cycle spectral variations inconsistent with stratospheric ozone observations. Nature, 9 (3), 206–209, 2016, DOI: 10.1038/ngeo2640.
  • Cahalan, R.F., G. Wen, J.W. Harder, and P. Pilewskie. Temperature responses to spectral solar variability on decadal time scales. Geophys. Res. Lett., 37, L07705, 2010, DOI: 10.1029/2009GL041898. [CrossRef]
  • Douglass, D.H., and B.D. Clader. Climate sensitivity of the Earth to solar irradiance. Geophys. Res. Lett., 29, 1786, 2002, DOI: 10.1029/2002GL015345. [CrossRef]
  • Dhomse, S.S., M.P. Chipperfield, W. Feng, W.T. Ball, Y.C. Unruh, D.J. Haigh, N.A. Krivova, S.K. Solanki, and A.K. Smith. Stratospheric O3 changes during 2001–2010: the small role of solar flux variations in a chemical transport model. Atmos. Chem. Phys., 13, 10113–10123, 2013, DOI: 10.5194/acp-13-10113-2013. [CrossRef]
  • Ermolli, I., K. Matthes, T. Dudok deWit, N.A. Krivova, K. Tourpali, et al. Recent variability of the solar spectral irradiance and its impact on climate modeling. Atmos. Chem. Phys., 13, 3945–3977, 2013, DOI: 10.5194/acp-13-3945-2013. [NASA ADS] [CrossRef]
  • Fontenla, J.M., J. Harder, W. Livingston, M. Snow, and T. Woods. High-resolutoin solar irradiance from extreme ultraviolet to far infrared. J. Geophys. Res., 116, D20108, 2011, DOI: 10.1029/211JD016032. [NASA ADS] [CrossRef]
  • Frame, T., and L.J. Gray. The 11-yr cycle in ERA-40 data: an update to 2008. J. Climate, 23, 2213–2222, 2010, DOI: 10.1175/2009JCLI3150.1. [CrossRef]
  • Geer, A.J., W.A. Lahoz, D.R. Jackson, D. Cariolle, and J.P. McCormack. Evaluation of linear ozone photochemistry parameterization in a stratosphere-troposphere data assimilation system. Atmos. Chem. Phys., 7, 939–957, 2007, DOI: 19.5194/acp-7-939-2007. [CrossRef]
  • Gray, L.J., J. Beer, M. Geller, J.D. Haigh, M. Lockwood, et al. Solar influence on climate. Rev. Geophys., 48, RG4001, 2010, DOI: 10.1029/2009GR000282. [NASA ADS] [CrossRef]
  • Gray, L.J., A.A. Scaife, D.M. Mitchell, S. Osprey, S. Ineson, et al. A lagged response to the 11 year solar cycle in observed winter Atlantic/European weather patterns. J. Geophys. Res. Atmos., 118 (13), 405–13420, 2013, DOI: 10.1002/2013JD020062. [CrossRef]
  • Haigh, J.D. The impact of solar variability on climate. Science, 272, 981–984, 1996, DOI: 10.1126/science.272.5264.981. [NASA ADS] [CrossRef] [PubMed]
  • Haigh, J.D. The effects of solar variability on the Earth’s climate. Philos. Trans. R. Soc. London, Ser. A, 361, 95–111, 2003, DOI: 10.1098/rsta.2002.1111. [CrossRef]
  • Haigh, J.D., A.R. Winning, R. Toumi, and J.W. Harder. An influence of spectral solar variations on radiative forcing of climate. Nature, 467, 696–699, 2010, DOI: 10.1038/nature09426. [NASA ADS] [CrossRef] [PubMed]
  • Harder, J.W., J.M. Fontenla, P. Pilewskie, E.C. Richard, and T.N. Woods. Trends in solar spectral irradiance variability in the visible and infrared. Geophys. Res. Lett., 36, L07801, 2009, DOI: 10.1029/2008GL036797. [NASA ADS] [CrossRef]
  • Hansen, J., G. Russell, D. Rind, P. Stone, A. Lacis, S. Lebedeff, R. Ruedy, and L. Travis. Efficient three-dimensional global models for climate studies: models I and II. Mon. Weather Rev., 111, 609–662, 1983, DOI: 10.1175/1520-0493(1983)111<0609:ETDGMF>2.0.CO;2. [CrossRef]
  • Hood, L.L., S. Misios, D.M. Mitchell, E. Rozanov, L.J. Gray, et al. Solar signals in CMIP-5 simulations: the ozone response. Q. J. R. Meteorol. Soc., 141, 2670–2689, 2015, DOI: 10.1002/qj.2553. [CrossRef]
  • Ineson, S., A.A. Scaife, J.R. Knight, J.C. Manners, N.J. Dunstone, L.J. Gray, and J.D. Haigh. Solar forcing of winter climate variability in the Northern Hemisphere. Nat. Geosci., 4, 753–757, 2011, DOI: 10.1038/NGEO1282. [CrossRef]
  • Kidston, J., A.A. Scaife, S.C. Hardiman, D.M. Mitchell, N. Butchart, M.P. Baldwin, and L.J. Gray. Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci., 8, 433–440, 2015, DOI: 10.1038/ngeo2424. [CrossRef]
  • Kodera, K., and Y. Kuroda. Dynamical response to the solar cycle: winter stratopause and lower stratosphere. J. Geophys Res., 107 (D24), 4749, 2002,DOI: 10.1029/2002JD002224. [CrossRef]
  • Kopp, G., and J.L. Lean. A new, lower value of total solar irradiance: evidence and climate significance. Geophys. Res. Lett., 38, L01706, 2011, DOI: 10.1029/2010GL045777. [NASA ADS] [CrossRef]
  • Kopp, G. An assessment of the solar irradiance record for climate studies. J. Space Weather Space Clim., 4, A14, 2014, DOI: 10.105/swsc/2014012. [NASA ADS] [CrossRef] [EDP Sciences]
  • Kopp, G. Magnitudes and timescales of total solar irradiance variability. J. Space Weather Space Clim., 6, A30, 2016, DOI: 10.1051/swsc/2016025. [CrossRef] [EDP Sciences]
  • Krivova, N.A., L.E.A. Vieira, and S.K. Solanki. Reconstruction of solar spectral irradiance since the Maunder Minimum. J. Geophys. Res., 115, A12112, 2010, DOI: 10.1029/2010JA015431. [NASA ADS] [CrossRef]
  • Lacis, A.A., and V. Oinas. A description of the correlated k distributed method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres. J. Geophys. Res., 96, 9027–9063, 1991, DOI: 10.1029/90JD01945. [NASA ADS] [CrossRef]
  • Lacis, A.A., J.E. Hansen, G.L. Russell, V. Oinas, and J. Jonas. The role of long-lived greenhouse gases as principal LW control knob that governs the global surface temperature for past and future climate change. Tellus B, 65, 19734, 2013, DOI: 10.3402/tellusb.v65i0.19734. [CrossRef]
  • Lean, J. Evolution of the Sun’s spectral irradiance since the Maunder Minimum. Geophys. Res. Lett., 27 (16), 2425–2428, 2000, DOI: 10.1029/2000GL000043. [NASA ADS] [CrossRef]
  • Lean, J., and M.T. DeLand. How does Sun’s spectrum vary? J. Climate, 25 (7), 2555–2560, 2012, DOI: 10.1175/JCLI-D-11-00571.1. [NASA ADS] [CrossRef]
  • Lee, J.N., R.F. Cahalan, and D.L. Wu. Solar rotational modulations of spectral irradiance and correlations with the variability of total solar irradiance. J. Space Weather Space Clim., 6, A33, 2016, DOI: 10.1051/swsc/2016028. [CrossRef] [EDP Sciences]
  • Matthes, K., Y. Kuroda, K. Kodera, and U. Langematz. Transfer of the solar signal from the stratosphere to the troposphere: northern winter. J. Geophys. Res., 111, D06108, 2006, DOI: 10.1029/2005JD006283. [CrossRef]
  • McClintock, W.E., G.J. Rottman, and T.N. Woods. Solar-Stellar Irradiance Comparison Experiment II (SOLSTICE II): instrument concept and design. Sol. Phys., 230, 225–258, 2005, DOI: 10.1007/s11207-005-7432-x. [NASA ADS] [CrossRef]
  • McLinden, C.A., S.C. Olsen, B. Hannegan, O. Wild, M.J. Prather, and J. Sundet. Stratospheric ozone in 3-D models: a simple chemistry and the cross-tropopause flux. J. Geophys. Res., 105, 14,653–14,666, 2000, DOI: 10.1029/2000JD90014. [CrossRef]
  • Meehl, G.A., J.M. Arblaster, K. Matthes, F. Sassi, and H. van Loon. Amplifying the Pacific climate system response to a small 11 year solar cycle forcing. Science, 325, 1114–1118, 2009, DOI: 10.1126/science.1172872. [NASA ADS] [CrossRef] [PubMed]
  • Merkel, A.W., J.W. Harder, D.R. Marsh, A.K. Smith, J.M. Fontenla, and T.N. Woods. The impact of solar spectral irradiance variability on middle atmospheric ozone. Geophys. Res. Lett., 38, L13802, 2011, DOI: 10.1029/ 2011GL047561. [NASA ADS] [CrossRef]
  • Misios, S., D.M. Mitchell, L.J. Gray, K. Tourpali, K. Matthes, et al. Solar signals in CMIP-5 simulations: effects of atmosphere–ocean coupling. Q. J. R. Meteorol. Soc., 142, 928–941, 2015, DOI: 10.1002/qj.2695. [CrossRef]
  • Mitchell, D., S. Misios, L.J. Gray, K. Tourpali, K. Matthes, L. Hood, H. Schmidt, G. Chiodo, R. Thieblemont, E. Rozanov, D. Shindell, and A. Krivolutsky. Solar signals in CMIP-5 simulations: the stratospheric pathway. Q. J. R. Meteorol. Soc., 141, 2390–2403, 2015, DOI: 10.1002/qj.2530. [CrossRef]
  • Oberländer, S., U. Langematz, K. Matthes, M. Kunze, A. Kubin, et al. The influence of spectral solar irradiance data on stratospheric heating rates during the 11 year solar cycle. Geophys. Res. Lett., 39, L01801, 2012, DOI: 10.1029/2011GL049539. [NASA ADS] [CrossRef]
  • Oinas, V., A.A. Lacis, D. Rind, D.T. Shindell, and J.E. Hansen. Radiative cooling by stratospheric water vapor: big differences in GCM results. Geophys. Res. Lett., 28, 2791–2794, 2001, DOI: 10.1029/2001GL013137. [CrossRef]
  • Pawson, S., W. Steinbrecht, A.J. Charlton-Perez, M. Fujiwara, A.Yu. Karpechko, I. Petropavlovskikh, J. Urban, and M. Weber. Update on global ozone: past, present, and future, Chapter 2 In: Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project – Report No. 55, World Meteorological Organization, Geneva, Switzerland, 2014.
  • Preminger, D., G. Chapman, and A. Cookson. Activity-brightness correlations for the Sun and Sun-like stars. Astrophys. J. Lett., 739, 6, 2011, DOI: 10.1088/2041-8205/739/2/L45. [NASA ADS] [CrossRef]
  • Remsberg, E.E. On the response of Halogen Occultation Experiment (HALOE) stratospheric ozone and temperature to the 11‐year solar cycle forcing. J. Geophys. Res., 113, D22304, 2008, DOI: 10.1029/2008JD010189. [CrossRef]
  • Rind, D., J. Lerner, J. Perlwitz, C. McLinden, and M. Prather. Sensitivity of tracer transports and stratospheric ozone to sea surface temperature patterns in the doubled CO2 climate. J. Geophys. Res., 107 (D24), 4800, 2002, DOI: 10.1029/2002JD002483. [CrossRef]
  • Rind, D., J. Lerner, J. Jonas, and C. McLinden. Effects of resolution and model physics on tracer transports in the NASA Goddard Institute for Space Studies general circulation models. J. Geophys. Res., 112, D09315, 2007, DOI: 10.1029/2006JD007476. [CrossRef]
  • Rind, D., J. Lean, J. Lerner, P. Lonergan, and A. Leboissitier. Exploring the stratospheric/tropospheric response to solar forcing. J. Geophys. Res., 113, D24103, 2008, DOI: 10.1029/2008JD010114. [NASA ADS] [CrossRef]
  • Rind, D., J. Lean, and J. Jonas. The impact of different absolute solar irradiance values on current climate model simulations. J. Climate, 27, 1100–1120, 2013, DOI: 10.1175/JCLI-D-13-00136.1. [CrossRef]
  • Scafetta, N., and R. Willson. ACRIM total solar irradiance satellite composite validation versus TSI proxy models. Astrophys. Space Sci., 350 (2), 421–442, 2014, DOI: 10.1007/s10509-013-1775-9. [CrossRef]
  • Schmutz, W., A. Fehlmann, W. Finsterle, G. Kopp, and G. Thuillier. Radiation processes in the atmosphere and ocean (IRS2012), AIP Conf. Proc., 1531, 624–627, 2013, DOI: 10.1063/1.4804847. [NASA ADS] [CrossRef]
  • Shapiro, A.V., E.V. Rozanov, A.I. Shapiro, T.A. Egorova, J. Harder, M. Weber, A.K. Smith, W. Schmutz, and T. Peter. The role of the solar irradiance variability in the evolution of the middle atmosphere during 2004–2009. J. Geophys. Res. Atmos., 118, 3781–3793, 2013, DOI: 10.1002/jgrd.50208. [NASA ADS] [CrossRef]
  • Shindell, D., D. Rind, N. Balachandran, J. Lean, and P. Lonergan. Solar cycle varibilty, ozone, and climate. Science, 284, 305–308, 1999, DOI: 10.1126/science.284.5412.305. [NASA ADS] [CrossRef] [PubMed]
  • Solanki, S.K., N.A. Krivova, and J.D. Haigh. Solar irradiance variability and climate. Annu. Rev. Astron. Astrophys., 51, 311–351, 2013, DOI: 10.1146/annurev-astro-082812-141007. [NASA ADS] [CrossRef]
  • Swartz, W.H., R.S. Stolarski, L.D. Oman, E.L. Fleming, and C.H. Jackman. Middle atmosphere response to different descriptions of the 11-yr solar cycle in spectral irradiance in a chemistry-climate model. Atmos. Chem. Phys., 12, 5937–5948, 2012, DOI: 10.5194/acp-12-5937-2012. [CrossRef]
  • Tung, K.K., and C.D. Camp. Solar cycle warming at the Earth’s surface in NCEP and ERA‐40 data: A linear discriminant analysis. J. Geophys. Res., 113, D05114, 2008, DOI: 10.1029/2007JD009164. [CrossRef]
  • Unruh, Y.C., W. Ball, and N.A. Krivova. Solar irradiance models and measurements: a comparison in the 220–240 nm wavelength band. Surv. Geophys., 33, 475–481, 2012, DOI: 10.1007/s10712-011-9166-7. [NASA ADS] [CrossRef]
  • Wang, S., K. Li, T.J. Pongetti, S.P. Sander, Y.L. Yung, et al. Mid-latitude atmospheric OH responses to the most recent 11-year solar cycle. PNAS, 110, 2023–2028, 2013, DOI: 10.10.1073/pnas.1117790110. [CrossRef]
  • Wen, G., R.F. Cahalan, J.D. Haigh, P. Pilewskie, L. Oreopoulos, and J.W. Harder. Reconciliation of modeled climate responses to spectral solar forcing. J. Geophys. Res. Atmos., 118, 6281–6289, 2013, DOI: 10.1002/jgrd.50506. [CrossRef]
  • White, W., J. Lean, D.R. Cayan, and M.D. Dettinger. Response of global upper ocean temperature to changing solar irradiance. J. Geophys. Res. [Oceans], 102, 3255–3266, 1997, DOI: 10.1029/96JC03549. [CrossRef]
  • WMO (World Meteorology Organization), Scientific assessment of ozone depletion: 2010. Global Ozone Research and Monitoring Project-Report No. 52, 516, Geneva, Switzerland, 2011.
  • Yeo, K.L., N.A. Krivoav, and S.K. Solanki. Solar cycle variation in solar irradiance. Space Sci. Rev., 186, 137–167, 2014, DOI: 10.1007/s11214-014-0061-7. [NASA ADS] [CrossRef]
  • Zwiers, F.W., and H. von Storch. Taking serial correlation into account in tests of the mean. J. Climate, 8, 336–351, 1995, DOI: 10.1175/1520-0442(1995)008<0336:tsciai>2.0.CO;2. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.