J. Space Weather Space Clim.
Volume 8, 2018
Space weather effects on GNSS and their mitigation
Article Number A15
Number of page(s) 14
Published online 20 February 2018
  • Aquino M, Andreotti M, Dodson AH, Strangeways H. 2007. On the use of ionospheric scintillation indices as input to receiver tracking models. Adv Space Res 40: 426–435, DOI:10.1016/j.asr.2007.05.035. [CrossRef] [Google Scholar]
  • Aquino M, Monico JFG, Dodson AH, Marques HA, Franceschi G, Alfonsi L, Romano V, Andreotti M. 2009. Improving the GNSS positioning stochastic model in the presence of ionospheric scintillation. J Geod 83: 953–966, DOI:10.1007/s00190-009-0313-6. [Google Scholar]
  • Bassiri S, Hajj GA. 1993. Higher-order ionospheric effects on the global positioning systems observables and means of modeling them. Manuscr Geod 18: 280–289. [Google Scholar]
  • Basu S, Groves KM, Specification and forecasting of outages on satellite communication and navigation systems, Space Weather, Geophysical Monograph, Vol. 125, pp. 424–430 American Geophysical Union, Washington, D. C., 2001 DOI:10.1029/GM125p0423 [Google Scholar]
  • Blewitt G. 1990. An automated editing algorithm for GPS data. Geophys Res Lett 17: 199–202. [CrossRef] [Google Scholar]
  • Brunini C, Azpilicueta F. 2009. Accuracy assessment of the GPS-based slant Total Electron Content (sTEC). J Geod 83: 773–785, DOI:10.1007/s00190-008-0296-8. [CrossRef] [Google Scholar]
  • Brunini C, Azpilicueta F. 2010. GPS slant total electron content accuracy using the single layer model under different geomagnetic regions and ionospheric conditions. J Geod 84: 293304 DOI:10.1007/s00190-010-0367-5. [CrossRef] [Google Scholar]
  • Brunini C, Meza A, Gende M, Azpilicueta F. 2008. South American regional ionospheric maps computed by GESA: A pilot service in the framework of SIRGAS. In: Advances in Space Research, Elsevier Ltd, 42 pp 737–744 DOI:10.1016/j.asr.2007.08.041. [CrossRef] [Google Scholar]
  • Cai C, Gao Y. 2007. Precise Point Positioning using combined GPS and GLONASS observations. J Glob Position Syst 6: 13–22. [CrossRef] [Google Scholar]
  • Cai C, Gao Y. 2013. Modeling and assessment of combined GPS/GLONASS Precise Point Positioning. GPS Solut 17: 223–236, DOI:10.1007/s10291-012-0273-9. [CrossRef] [Google Scholar]
  • Chen D, Ye S, Xia J, Liu Y, Xia P. 2016. A geometry-free and ionosphere-free multipath mitigation method for BDS three-frequency ambiguity resolution. J Geod 90: 703–714, DOI:10.1007/s00190-016-0903-z. [CrossRef] [Google Scholar]
  • Ciraolo L, Azpilicueta F, Brunini C, Meza A, Radicela S.M. 2007. Calibration errors on experimental slant total electron content determined with GPS. J Geod 81: 111–120, DOI:10.1007/s00190-006-0093-1. [CrossRef] [Google Scholar]
  • Collins P, Bisnath S. 2008. Undifferenced GPS ambiguity resolution using the decoupled clock model and ambiguity datum fixing. J Inst Navig 57: 123–135. [CrossRef] [Google Scholar]
  • Conker RS, El-Arini B, Hegarty CJ, Hsiao T. 2003. Modeling the effects of ionospheric scintillation on GPS/Satellite-Based augmentation system availability. Radio Sci 37: 1-1-1-23, DOI: 10.1029/2000RS002604. [Google Scholar]
  • Davies K. Ionospheric radio, Short Run Press LTd., ISBN: 978-0863411861, 1990. [CrossRef] [Google Scholar]
  • De Paula ER, Kherani EA, Abdu MA, Batista IS, Sobral JHA, et al. 2007. Characteristics of the ionospheric irregularities over Brazilian longitudinal sector. Indian J Radio Space Phys 36: 268–277 [Google Scholar]
  • Donahue B, Wentzel J, Berg R. 2015. Guidelines for RTK/RTN GNSS surveying in Canada. Version 1.2. Available at: Accessed in July 2017. [Google Scholar]
  • Estey LH, Meertens CM. 1999. TEQC: the multi-purpose toolkit for GPS/GLONASS data. GPS Solut 3: 42–49, DOI:10.1007/PL00012778. [CrossRef] [Google Scholar]
  • Fritsche M, Dietrich R, Knöfel C, Rülke A, Vey S, Rotacher M, Steigenberger P. 2005. Impact of higher-order ionospheric terms on GPS estimates. Geophys Res Lett 32: L23311, DOI:10.29/2005GL024342. [CrossRef] [Google Scholar]
  • Ge M, Gendt G, Dick G, Zhang FP. 2005. Improving carrier-phase ambiguity resolution in global GPS network solutions. J Geod 79: 103–110. [CrossRef] [Google Scholar]
  • Geng J, Meng X, Dodson A, Teferle F. 2010. Integer ambiguity resolution in Precise Point Positioning: method comparison. J Geod 84: 569–581, DOI:10.1007/s00190-010-0399-x [CrossRef] [Google Scholar]
  • GLONASS, 2016. GLONASS Status. Federal Space Agency. Information-Analycal Centre 2016. Available at Acessed in 2017. [Google Scholar]
  • Hernandes-Pajares M, Juan JM, Sanz J, Orús R. Second-order ionospheric term in GPS: Implementation and impact on geodetic estimates, J Geophys Res 112: B08417, DOI:10.1029/2006JB004707, 2007. [Google Scholar]
  • Hofmann-Wellenhof B, Lichtenegger H, Wasle E, GNSS-Global Navigation Satellite Systems: GPS, GLONASS, Galileo and more, Springer-Verlag, New York, ISBN: 978-3-211-73012-6, 2008. [Google Scholar]
  • Hoque MM, Jakowski N. 2007. Higher order ionospheric effects in precise GNSS positioning. J Geod 81: 259–268. [CrossRef] [Google Scholar]
  • ICD-GLONASS, 2008. Global Navigation Satellite System GLONASS interface control document: navigational radio signal in bands L1, L2, version 5.1, Moscow, . [Google Scholar]
  • Kedar S, Hajj A, Wilson BD, Heflin MB. 2003. The effect of the second order GPS ionospheric correction on receiver positions. Geophys Res Lett 30: 1829 [CrossRef] [Google Scholar]
  • Kelley MC, The earth's ionosphere: plasma physics and electrodynamics, Academic Press, San Diego, CA, 1989. [Google Scholar]
  • Klobuchar JA. 1976. Ionospheric Time delay corrections for advanced satellite ranging systems, NATO AGARD Conference, Proceedings 209. In: Propagation Limitations of Navigation and Positioning Systems. Paris: NATO AGARD. [Google Scholar]
  • Laurichesse D, Mercier F, Berthias JP, Broca P, Cerri L. 2009. Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination. J Inst Navig 56: 135–149. [CrossRef] [Google Scholar]
  • Leick A, GPS satellite surveying, John Wiley and Sons, New York, ISBN: 0-471-05930-7 2004. [Google Scholar]
  • Li X, Zhang X, Ren X, Fritsche M, Wickert J, Schuh H. 2015. Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou. Sci Rep 5, DOI:10.1038/srep08328. [Google Scholar]
  • Marques HA, Monico JFG, Aquino M. 2011. RINEX_HO: second- and third-order ionospheric corrections for RINEX observation files. GPS Solut 15: 305–314. [CrossRef] [Google Scholar]
  • Marques HAS, Monico JFG, Marques HA. 2016. Performance of the L2C civil GPS signal under various ionospheric scintillation effects. GPS Solut 20: 139–149, DOI:10.1007/s10291-015-0472-2. [CrossRef] [Google Scholar]
  • Oleynik E. 2012. GLONASS: status and modernization. In: Proceedings of United Nations International Meeting on the Applications of Global Navigation Satellite Systems. Riga, Lativia. Available at Accessed in 2017. [Google Scholar]
  • Petit G, Luzum B. 2010. IERS Conventions (2010). IERS Convention Centre. Bureau International des Poids et Mesures (BIPM) and US Naval Observatory (USNO. [Google Scholar]
  • Seeber G. Satellite geodesy: foundations, methods, and applications, 2nd edn., Walter de Gruyter, Berlin, New York, ISBN: 3-11-017549-5, 2003. [Google Scholar]
  • Silva HA, Camargo PO, Monico JFG, Aquino M, Marques HA, De Franceschi G, Dodson A. 2010. Stochastic modelling considering ionospheric scintillation effects on GNSS relative and point positioning. Adv Space Res 45: 1113–1121, DOI:10.1016/j.asr.2009.10.009. [CrossRef] [Google Scholar]
  • Teunissen PJG, Khodabandeh A. 2015. Review and principles of PPP-RTK methods. J Geod 89: 217–240, DOI: [CrossRef] [Google Scholar]
  • Tiwari R, Skone S, Tiwari S, Strangeways HJ. 2011. 3WBMod assisted PLL GPS software receiver for mitigating scintillation affect in high latitude region. IEEE, Available at [Google Scholar]
  • Van Dierendonck AJ. 2001. Measuring ionospheric scintillation effects from GPS signals. In: ION 59th Annual Meeting. Albuquerque, New Mexico, pp. 391–396. [Google Scholar]
  • Van Dierendonck AJ, Klobuchar J, Hua Q. 1993. Ionospheric scintillation monitoring using commercial single frequency C/A code receivers. In: Proceedings of the 6th international technical meeting of the satellite division of the Institute of Navigation (ION GPS-93). Arlington, VA, pp. 1333–1342. [Google Scholar]
  • Vani BC, Shimabukuro MH, Monico JFG. 2016. Visual exploration and analysis of ionospheric scintillation monitoring data: the ISMR query tool. Comput Geosci 104: 125–134 Available at Accessed 2017. [CrossRef] [Google Scholar]
  • Wanninger L. 2011. Carrier-phase inter-frequency biases of GLONASS receivers. J Geod 86: 139–148, DOI:10.1007/s00190-011-0502-y. [CrossRef] [Google Scholar]
  • Xu R, Liu Z, Li M, Morton Y, Chen W. 2012. An analysis of low-latitude ionospheric scintillation and its effects on Precise Point Positioning. J Glob Position Syst 11: 22–32, DOI:10.5081/jgps.11.1.22. [CrossRef] [Google Scholar]
  • Zhang X, Guo F, Zhou P. 2014. Improved Precise Point Positioning in the presence of ionospheric scintillation. GPS Solut 18: 51–60. [CrossRef] [Google Scholar]
  • Zheng K, Zhao W, Pang S, Yang Y, Wan S. Study on Mitigation of Multipath Effect in Real-Time Kinematic PPP with a Single Shipborne GNSS Receiver. In: Sun J, Liu J, Yang Y, Fan S. (eds.) China Satellite Navigation Conference (CSNC) 2012 Proceedings. Berlin, Heidelberg: Lecture Notes in Electrical Engineering, Springer, pp. 161, 2012. DOI:10.1007/978-3-642-29193-7_66. [Google Scholar]
  • Zhimin L, Li Y, Guo J, Li F. 2016. Influence of higher-order ionospheric delay correction on GPS precise orbit determination and precise positioning. Geod Geodyn 7: 369–376, ISSN 1674-9847.2016. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.