Issue
J. Space Weather Space Clim.
Volume 8, 2018
Measurement, Specification and Forecasting of the Solar Energetic Particle Environment and GLEs
Article Number A52
Number of page(s) 35
DOI https://doi.org/10.1051/swsc/2018042
Published online 23 November 2018
  • Abbasi R, Ackermann M, Adams J, et al. (IceTop Colaboration). 2008. Solar energetic particle spectrum on 2006 December 13 determined by IceTop. Astrophys J Lett 689: L65–L68. [NASA ADS] [CrossRef] [Google Scholar]
  • Adams N. 1950. A temporary increase in the neutron component of cosmic rays. Phil Mag Ser 41(316): 503–505. [CrossRef] [Google Scholar]
  • Andriopoulou M, Mavromichalaki H, Plainaki C, Belov A, Eroshenko E. 2011. Intense Ground-Level Enhancements of solar cosmic rays during the last solar cycles. Sol Phys 269: 155–168. DOI: 10.1007/s11207-010-9678-1 [CrossRef] [Google Scholar]
  • Aschwanden MJ. 2012. A statistical fractal-diffusive avalanche model of a slowly-driven self-organized criticality system. A&A 539: A2. DOI: 10.1051/0004-6361/201118237 [CrossRef] [EDP Sciences] [Google Scholar]
  • Aschwanden MJ, Tarbell TD, Nightingale RW, Schrijver CJ, Title A, Kankelborg CC, Martens PCH, Warren HP. 2000. Time variability of the “quiet” Sun observed with TRACE. II. Physical parameters, temperature evolution, and energetics of EUV nanoflares. Astrophys J 535: 1047–1065. [Google Scholar]
  • Asvestari E, Willamo T, Gil A, Usoskin IG, Kovaltsov GA, Mikhailov VV, Mayorov A. 2017. Analysis of Ground Level Enhancements (GLE): Extreme solar energetic particle events have hard spectra. Adv Space Res 60: 781–787. [Google Scholar]
  • Atwell W, Tylka AJ, Dietrich W, Rojdev K. 2010. Band function fit to 23rd solar cycle ground level proton events and radiation exposure assessments. 40th International Conference on Environmental Systems, 11–15 July, Barcelona, Spain, eISBN: 978-1-60086-957-0. DOI: 10.2514/MICES10. [Google Scholar]
  • Atwell W, Tylka AJ, Dietrich W, Rojdev K, Matzkind C. 2015. Sub-GLE solar particle events and the implications for lightly-shielded systems flown during an era of low solar activity. 45th International Conference on Environmental Systems, 12–16 July, Bellevue, WA, ICES-2015-340. [Google Scholar]
  • Augusto CRA, Navia CE, de Oliveira MN, Nepomuceno AA, Fauth AC. 2016. Ground level observations of relativistic solar particles on October 29th, 2015: Is it a new GLE on the current solar cycle? arxiv: 1603.08863v1 [astro-ph.SR]. [Google Scholar]
  • Aulanier G, Démoulin P, Schrijver CJ, Janvier M, Pariat E, Schmieder B. 2013. The standard flare model in three dimensions. II. Upper limit on solar flare energy. A&A, 549: A66. DOI: 10.1051/0004-6361/201220406. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Bailey DK. 1959. Abnormal ionization in the lower ionosphere associated with cosmic-ray flux enhancements. Proc IRE 47(2): 255–266. [CrossRef] [Google Scholar]
  • Balabin YV, Germanenko AV, Gvozdevsky BB, Vashenyuk EV. 2015. Analysis of GLE72 of 6 January 2014. Bull Russ Acad Sci 79(5): 612–614. [Google Scholar]
  • Baker DN, Li X, Pulkkinen A, Ngwira CM, Mays ML, Galvin AB, Simunac KDC. 2013. A major solar eruptive event in July 2012: Defining extreme space weather scenarios. Space Weather 11: 585–591. DOI: 10.1002/swe.20097. [NASA ADS] [CrossRef] [Google Scholar]
  • Band D, Matteson J, Ford L, Schaefer B, Palmer D, et al. 1993. BATSE observations of gamma-ray burst spectra. I. Spectral diversity. Astrophys J 413: 281–292. [CrossRef] [Google Scholar]
  • Beck P. 2007. Aircraft crew radiation exposure in aviation altitudes during quiet and solar storm periods, Ch. 4.3, in: Lilensten J, Editor. Space Weather. Astrophysics and Space Science Library, vol 344, Springer, Dordrecht, The Netherlands, pp. 241–267 [CrossRef] [Google Scholar]
  • Beer J, McCracken KG, von Steiger R. 2012. Cosmogenic radionuclides: Physics of earth and space environments. Springer, Berlin, Germany. DOI: 10.1007/978-3-642-14651-0. [Google Scholar]
  • Belov AV, Eroshenko EA. 1996. Proton spectra of the four remarkable GLEs in the 22nd solar cycle. Radiat Meas 26(3): 461–466. [CrossRef] [Google Scholar]
  • Belov AV, Eroshenko EA, Kryakunova ON, Kurt VG, Yanke VG. 2010. Ground level enhancements of solar cosmic rays during the last three solar cycles. Geomagn Aeronom 50: 21–33. [CrossRef] [Google Scholar]
  • Belov A, Eroshenko E, Kryakunova O, Nikolayevskiy N, Malimbayev A, Tsepakina I, Yanke V. 2015a. Possible ground level enhancements at the beginning of the maximum of Solar Cycle 24. J Phys Conf Ser 632: 012063. DOI: 10.1088/1742-6596/632/1/012063. [CrossRef] [Google Scholar]
  • Belov A, Eroshenko E, Kryakunova O, Nikolayevskiy N, Malimbayev A, Tsepakina I, Yanke V. 2015b. Possible ground level enhancements of solar cosmic rays in 2012. Bull Russ Acad Sci Div Chem Sci Physics 79(5): 561–565. [CrossRef] [Google Scholar]
  • Berezhko EG, Taneev SN. 2003. Shock acceleration of solar cosmic rays. Russian Astron Lett 29: 530–542. [NASA ADS] [CrossRef] [Google Scholar]
  • Berezhko EG, Taneev SN. 2013. Acceleration of solar cosmic rays by shock waves. Russian Astron Lett, 39: 458–469. [CrossRef] [Google Scholar]
  • Berggren AM, Beer J, Possnert G, Aldahan A, Kubik P, Christ M, Johnsen SJ, Abreu J, Vinther BM. 2009. A 600-year annual 10Be record from the NGRIP ice core, Greenland. Geophys Res Lett 36: L11801. DOI: 10.1029/2009GL038004. [NASA ADS] [CrossRef] [Google Scholar]
  • Bieber JW, Clem J, Evenson P, Pyle R, Sáiz A, Ruffolo D. 2013. Giant Ground Level Enhancement of relativistic solar protons on 2005 January 20, I. Spaceship Earth observations. Astrophys J 771: 92. DOI: 10.1088/0004-637X/771/2/92. [CrossRef] [Google Scholar]
  • Boteler DH. 2006. The super storms of August/September 1859 and their effects on the telegraph system. Adv Space Res 38: 159–172. [NASA ADS] [CrossRef] [Google Scholar]
  • Botley CM. 1957. Some great tropical aurorae. J Brit Astron Assoc 67: 188–191. [Google Scholar]
  • Bütikofer R, Flückiger EO. 2011. Radiation doses along selected flight profiles during two extreme solar cosmic ray events. Astrophys Space Sci Trans 7: 105–109, http://www.astrophys-space-sci-trans.net/7/105/2011. [CrossRef] [Google Scholar]
  • Bütikofer R, Flückiger E. 2013. Differences in published characteristics of GLE60 and their consequences on computed radiation dose rates along selected flight paths. J Phys Conf Ser 409(1): 012166. DOI: 10.1088/1742-6596/409/1/012166. [CrossRef] [Google Scholar]
  • Bütikofer R, Flückiger E. 2015. What are the causes for the spread of GLE parameters deduced from NM data? J Phys Conf Ser 632: 012053. DOI: 10.1088/1742-596/632/1/012053. [CrossRef] [Google Scholar]
  • Bütikofer R, Flückiger E, Desorgher L, Moser M. 2008. The extreme solar cosmic ray particle event on 20 January 2005 and its influence on the radiation dose rate at aircraft altitude. Sci Total Environ 391: 177–183. DOI: 10.5194/astra-7-105-2011. [CrossRef] [Google Scholar]
  • Bütikofer R, Flückiger E, Balabin Y, Belov A. 2013. The reliability of GLE analysis based on neutron monitor data a critical review. Proc 33rd Inter Cosmic Ray Conf, Brazil, Rio de Janeiro, (The Astroparticle Physics Conference), paper icrc2013-0863. [Google Scholar]
  • Candelaresi S, Hillier A, Maehara H, Brandenburg A, Shibata K. 2014. Superflare occurrence and energies on G-, K-, and M-type dwarfs. Astrophys J 792: 67. DOI: 10.1088/0004-637X/792/1/67. [Google Scholar]
  • Carmichael H. 1962. High-energy solar-particle events. Space Sci Rev 1: 28–61. [NASA ADS] [CrossRef] [Google Scholar]
  • Carmichael H. 1968. Cosmic rays (Instruments), in: Annals of the IQSY, vol. 1, MIT Press, Cambridge, MA, 178–197. [Google Scholar]
  • Carrington RC. 1860. Description of a singular appearance seen on the Sun on September 1, 1859. Mon Not R Astron Soc 20: 13–15. [Google Scholar]
  • Chirkov NP, Filippov AT. 1977. Acceleration of energetic particles up to relativistic energies in the interplanetary medium. Izvestiya (Bulletin) AN SSSR, Phys Ser 41(9): 1776–1781. [Google Scholar]
  • Chupp EL. 1996. Evolution of our understanding of solar flare particle acceleration: (1942–1995), in: Ramaty R, Mandzhavidze N, Hua X-M, Editors. High energy solar physics, AIP Conference Proceeding, AIP, New York, NY, 374, 3–31. [CrossRef] [Google Scholar]
  • Cliver EW, Dietrich WF. 2013. The 1859 space weather event revisited: limits of extreme activity. J Space Weather Space Clim 3: A31. DOI: 10.1051/swsc/2013053. [Google Scholar]
  • Cliver EW, Svalgaard L. 2004. The 1859 solar-terrestrial disturbance and the current limits of extreme space weather activity. Sol Phys 224: 407–422. [NASA ADS] [CrossRef] [Google Scholar]
  • Cliver EW, Tylka AJ, Dietrich WF, Ling AG. 2014. On a solar origin for the cosmogenic nuclide event of 775 AD. Astrophys J 781: 32. DOI: 10.1088/0004-637X/781/1/32. [CrossRef] [Google Scholar]
  • Compton AH, Wollan EO, Bennet RD. 1934. A precision recording cosmic-ray meter. Rev Sci Instr 5: 415–422. [CrossRef] [Google Scholar]
  • Crosby NB, Aschwanden MJ, Dennis BR. 1993. Frequency distributions and correlations of solar X-ray flare parameters. Sol Phys 143(2): 275–299. [Google Scholar]
  • Crosby N, Heynderickx D, Jiggens P, Aran A, Sanahuja B, et al. 2015. SEPEM: A tool for statistical modeling the solar energetic particle environment. Space Weather 13: 406–426. DOI: 10.1002/2013SW001008. [CrossRef] [Google Scholar]
  • D’Andrea C, Poirier J. 2005. Ground level muons coincident with the 20 January 2005 solar flare. Geophys Res Lett 32, L14102. DOI: 10.1029/2005GL023336. [Google Scholar]
  • Desorgher L. 2005. PLANETOCOSMICS software user manual. University of Bern. [Google Scholar]
  • Desorgher L. 2007. User guide of the PLANETOCOSMICS code. Cosmic ray group, University of Bern, Switzerland, http://cosray.unibe.ch/~laurent/planetocosmics/ . [Google Scholar]
  • Desorgher L, Flückiger EO, Gurtner M, Mozer MR, Bütikofer R. 2005. Atmocosmics: a geant 4 code for computing the interaction of cosmic rays with the Earth’s atmosphere. Int J Mod Phys A 20(29): 6802–6804. DOI: 10.1142/S0217751X0503013. [Google Scholar]
  • Desorgher L, Kudela K, Flückiger E, Bütikofer R, Storini M, Kalegaev V. 2009. Comparison of Earth’s magnetospheric magnetic field models in the context of cosmic ray physics. Acta Geophys 57(1): 75–87. DOI: 10.2478/s11600-008-0065-3 [CrossRef] [Google Scholar]
  • Dorman LI. 1957. Variatsii Kosmicheskikh Luchei (Cosmic Ray Variations). Gostekhizdat, Moscow. [Google Scholar]
  • Dorman LI, Miroshnichenko LI. 1968. Solar cosmic rays. Nauka, Fizmatgiz, Moscow (in Russian). English Edition for NASA by Indian National Scientific Documentation Center, Delhi, 1976. [Google Scholar]
  • Dorman L, Zukerman I. 2003. Initial concept for forecasting the flux and energy spectrum of energetic particles using ground-level cosmic ray observations. Adv Space Res 31: 925–932. [CrossRef] [Google Scholar]
  • Dorman LI, Miroshnichenko LI, Sorokin MO. 1990. Cosmic ray data as a basis for predicting the onset and development of solar proton events, in: Thompson RJ, Cole DG, Wilkinson PJ, Shea MA, Smart D, Heckman G, Editors. Solar-terrestrial predictions. Proceeding Workshop at Leura, Australia, October 16–20, 1989, NOAA, ESRL, Boulder, CO, 1, 386–390. [Google Scholar]
  • Dreschhoff GAM, Zeller EJ. 1990. Evidence of individual solar proton events in Antarctic snows. Sol Phys 127: 333–346. [CrossRef] [Google Scholar]
  • Dreschhoff GAM, Zeller EJ. 1994. 415-year Greenland ice core record of solar proton events dated by volcanic eruptive episodes. Inst Tertiary Quant Stud TER–QUA Sup Ser 2: 1–24, Nebraska Academy of Sciences Inc., Lincoln. [Google Scholar]
  • Dreschhoff GAM, Zeller EJ. 1998. Ultra-high resolution nitrate in polar ice as indicators of past solar activity. Sol Phys 177: 365–374. [CrossRef] [Google Scholar]
  • Dreschhoff GAM, Shea MA, Smart DF, McCracken KG. 1997. Evidence for historical solar proton events from NO(X) precipitation in polar ice cores. Proc 25th Int Cosmic Ray Conf, Durban, South Africa, 1: 89–92. [Google Scholar]
  • Duderstadt KA, Dibb JE, Jackman CH, Randall CE, Solomon SC, Mills MJ, Schwadron NA, Spence HE. 2014. Nitrate deposition to surface snow at Summit, Greenland, following the 9 November 2000 solar proton event. J Geophys Res Atmos 119: 6938–6957. DOI: 10.1002/2013JD021389. [CrossRef] [Google Scholar]
  • Duderstadt KA, Dibb JE, Schwadron NA, Spence HE, Solomon SC, Yudin VA, Jackman CH, Randall CE. 2016a. Nitrate ion spikes in ice cores not suitable as proxies for solar proton events. J Geophys Res Atmos 121: 2994–3016. [CrossRef] [Google Scholar]
  • Duderstadt KA, Dibb JE, Jackman CH, Randall CE, Schwadron NA, Solomon SC, Spence HE. 2016b. Comment on “Atmospheric ionization by high-fluence, hard spectrum solar proton events and their probable appearance in the ice core archive” by A. L. Melott et al. J Geophys Res Atmos 121: 12484–12489. [CrossRef] [Google Scholar]
  • Duggal SP. 1979. Relativistic solar cosmic rays. Rev Geophys Space Res 17: 1021–1058. [NASA ADS] [CrossRef] [Google Scholar]
  • Elliot H. 1952. The variations of cosmic ray intensity, in: Wilson JG, Wouthuysen SA, Editors. Progress in cosmic ray physics. North-Holland Publishing Co., Amsterdam, 1, 453–514. [Google Scholar]
  • Ellison DC, Ramaty R. 1985. Shock acceleration of electrons and ions in solar flares. Astrophys J 298: 400–408. [NASA ADS] [CrossRef] [Google Scholar]
  • Evenson P. 2011. Neutron monitor: The once and future CosRay. Presentation at South Pole Astrophysics Meeting, Washington, DC, 4 April. [Google Scholar]
  • Evenson P, Bieber J, Clem J, Pyle R. 2011. South Pole neutron monitor lives again. Proc 32nd Int Cosmic Ray Conf, Beijing, China, 11, 454–457. [Google Scholar]
  • Feynman J, Armstrong TP, Dao-Gibner L, Silverman S. 1988. A new proton fluence model for E > 10 MeV, in: Feynman J, Gabriel S, Editors. Interplanetary particle environment. Jet Propulsion Lab, Pasadena, CA, JPL Pub. 88-28, 58–71. [Google Scholar]
  • Feynman J, Armstrong TP, Dao-Gibner L, Silverman S. 1990. New interplanetary proton fluence model. J Spacecr Rockets 27(4): 403–410. [Google Scholar]
  • Feynman J, Spitale G, Wang J, Gabriel S. 1993. Interplanetary fluence model: JPL 1991. J Geophys Res 98: 13281–13294. [CrossRef] [Google Scholar]
  • Filippov AT, Chirkov NP. 1977. Spectrum of relativistic particles accelerated in the interplanetary medium. Proc 15th Int Cosmic Ray Conf, Plovdiv, Bulgaria 5: 208–213. [Google Scholar]
  • Filippov AT, Chirkov NP. 1978. Acceleration of particles up to relativistic energies in the interplanetary medium. Izvestiya (Bulletin) AN SSSR, Phys Ser 42: 1078–1081. [Google Scholar]
  • Flückiger EO, Butikofer R, Muraki Y, Matsubara Y, Koi T, Tsuchiya H, Hoshida T, Sako T, Sakai T. 1998. A new solar neutron telescope at Gornergrat, in: Medina J, Editor. Rayos Cosmicos-98, (Proc 16th European Cosmic Ray Symposium). Alcala University Press, Spain, 219–222. [Google Scholar]
  • Forbush SE. 1946. Three unusual cosmic-ray intensity increases due to charged particles from the Sun. Phys Rev 70: 771–772. [Google Scholar]
  • Fuller N, Bottollier-Depois JF, Clairand I, Trompier F. 2013. SiGLE: Computing radiation doses due to GLEs onboard aircrafts within the SIEVERT system. 10th European Space Weather Week. [Google Scholar]
  • Gnevyshev MN. 1977. Essential features of the 11-year solar cycle. Sol Phys 51(1): 175–183. [CrossRef] [Google Scholar]
  • Gopalswamy N, Xie H, Yashiro S, Akiyama S, Mäkelä P, Usoskin IG. 2012. Properties of ground level enhancement events and the associated solar eruptions during solar cycle 23. Space Sci Rev 171: 23–60. [Google Scholar]
  • Gopalswamy N, Yashiro S, Thakur N, Mäkelä P, Xie H, Akiyama S. 2016. The 2012 July 23 backside eruption: An extreme energetic particle event? Astrophys J 833: 216. DOI: 10.3847/1538-4357/833/2/216. [Google Scholar]
  • Gupta M, Mishra VK, Mishra AP. 2007. Solar activity parameters and their interrelationship: Continuous decrease in flare activity from solar cycles 20 to 23. J Geophys Res 112: A05105. DOI: 10.1029/2006JA012076. [Google Scholar]
  • Hubert G, Aubry S. 2017. Analysis of solar and galactic cosmic rays induced atmospheric ionizing radiation: Impacts for typical transatlantic flights and Antarctica environment. JSM Environ Sci Ecol 5(3): 1050. [Google Scholar]
  • Jones AE, Wolff EW, Ames D, Bauguitte SJ-B, Clemitshaw KC, Fleming Z, Mills GP, Saiz-Lopez A, Salmon RA, Sturges WT, Worton DR. 2011. The multi-seasonal NOy budget in coastal Antarctica and its link with surface snow and ice core nitrate: Results from the CHABLIS campaign. Atmos Chem Phys 11: 9271–9285. DOI: 10.5194/acp-11-9271-2011. [CrossRef] [Google Scholar]
  • Jull AJT, Panyushkina IP, Lange TE, Kukarskih VV, Myglan VS, Clark KJ, Salzer MW, Burr GS, Leavitt SW. 2014. Excursions in the 14C record at A.D. 774–775 in tree rings from Russia and America. Geophys Res Lett 41: 3004–3010. DOI: 10.1002/2014GL059874. [NASA ADS] [CrossRef] [Google Scholar]
  • Kahler SW, Cliver EW, Tylka AJ, Dietrich WF. 2012. A comparison of ground level event e/p and Fe/O ratios with associated solar flare and CME characteristics. Space Sci Rev 171: 121–139. [CrossRef] [Google Scholar]
  • Kallenrode M-B, Cliver EW. 2001a. Rogue SEP events: Observational aspects. Proc 27th Int Cosmic Ray Conf, Hamburg, Germany 8: 3314–3317. [Google Scholar]
  • Kallenrode M-B, Cliver EW. 2001b. Rogue SEP events: Modeling. Proc 27th Int Cosmic Ray Conf, Hamburg, Germany 8: 3318–3321. [Google Scholar]
  • Katsova MM, Kitchatinov LL, Livshits MA, Moss DL, Sokoloff DD, Usoskin IG. 2018. Can superflares occur on the Sun? A view from dynamo theory. Russian Astro Rep 62(1): 72–80. [NASA ADS] [CrossRef] [Google Scholar]
  • Kepicova O, Miroshnichenko LI, Stehlik M. 1982. Analysis of solar cosmic ray increases in September 1977 based on ground-level data. Physica Solariterrestris, Potsdam 19: 40–52. [Google Scholar]
  • Kepko L, Spence H, Shea MA, Smart DF, Dreschhoff GAM. 2008. Observations of impulsive nitrate enhancements associated with ground-level cosmic ray events 1–4 (1942–1949), in: Caballero R, D’Olivo JC, Medina-Tanco G, Nellen L, Sánchez FA, Valdés-Galicia JF, Editors. Proc 30th Int Cosmic Ray Conf, Universidad Nacional Autónoma de México, Mexico City, Mexico, 1, 729–732. [Google Scholar]
  • Kepko L, Spence H, Smart DF, Shea MA. 2009. Interhemispheric observations of impulsive nitrate enhancements associated with the four large ground-level solar cosmic ray events (1940–1950). J Atm Sol Terr Phys 71: 1840–1845. [CrossRef] [Google Scholar]
  • Kitchatinov LL, Olemskoy SV. 2016. Dynamo model for grand maxima of solar activity: Can super flares occur on the Sun? Mon Not R Astron Soc 459: 4353–4359. [NASA ADS] [CrossRef] [Google Scholar]
  • Kiraly P, Wolfendale AW. 1999. Long-term particle fluence distributions and short-term observations. Proc 26th Int Cosmic Ray Conf, Salt Lake City, USA, 6, 163–166. [Google Scholar]
  • Kovaltsov GA, Usoskin IG. 2014. Occurrence probability of large solar energetic particle events: Assessment from data on cosmogenic radionuclides in lunar rocks. Sol Phys 289: 211–220. [Google Scholar]
  • Kovaltsov GA, Usoskin IG, Cliver EW, Dietrich WF, Tylka AJ. 2014. Fluence ordering of solar energetic proton events using cosmogenic radionuclide data. Sol Phys 289: 4691–4700. DOI: 10.1007/s11207-014-20380606-7. [NASA ADS] [CrossRef] [Google Scholar]
  • Krasilnikov DD, Kuzmin AI, Shafer YG. 1955. Cosmic ray intensity bursts. Cosmic Ray Intensity Variations, Proc Yakutsk Branch of the USSR Academy of Sciences, Phys Ser, Issue 1, Publishing House of the USSR Academy of Sciences, Moscow, 41–47, (in Russian). [Google Scholar]
  • Krivolutsky AA, Repnev AI. 2012. The impact of cosmic energetic particles on the Earth’s atmosphere (Review). Geomagn Aeron 52: 723–754, (in Russian). [CrossRef] [Google Scholar]
  • Kurt V, Belov A, Kudela K, Yushkov B. 2018. Some characteristics of GLE on 2017 September 10. Contrib. Astron. Obs. Skalnate Pleso 35, 1–11. [Google Scholar]
  • Kuzmin AI, Filippov AT, Chirkov NP. 1983. Large-scale disturbances of solar wind and cosmic ray acceleration in the interplanetary space. Izvestiya AN SSSR, Phys Ser 47: 1703–1706. [Google Scholar]
  • Lantos P, Fuller N. 2004. Semi-empirical model to calculate potential radiation exposure on board airplane during solar particle events. IEEET Plasma Sci 32(4): 1468–1477. [CrossRef] [Google Scholar]
  • Lantos P. 2006. Radiation doses potentially received on-board aeroplanes during recent solar particle events. Radiat Prot Dosim 118(4): 363–374. DOI: 10.1093/rpd/nci356. [CrossRef] [Google Scholar]
  • Lange I, Forbush SE. 1942. Further note on the effect on cosmic-ray intensity of the magnetic storm of March 1, 1942. Terr Magn Atmos Electr 47: 331–334. [CrossRef] [Google Scholar]
  • Levy EH, Duggal SP, Pomerantz MA. 1976. Adiabatic Fermi acceleration of energetic particles between converging interplanetary shock waves. J Geophys Res 81: 51–59. [CrossRef] [Google Scholar]
  • Li C, Firoz KA, Sun LP, Miroshnichenko LI. 2013. Electron and proton acceleration during the first GLE event of solar cycle 24. Astrophys. J 770: 34. DOI: 10.1088/0004-637X/770/1/34. [NASA ADS] [CrossRef] [Google Scholar]
  • Li C, Miroshnichenko LI, Fang C. 2015. Proton activity of the Sun in current solar cycle 24. Res Astron Astrophys (RAA, China) 15: 1036–1044. DOI: 10.1088/1674-4527/15/7/011. [CrossRef] [Google Scholar]
  • Li C, Miroshnichenko LI, Sdobnov VE. 2016. Small size GLE of 6 January 2014: Acceleration by CME-driven shock? Sol Phys 291: 975–987. DOI: 10.1007/s11207-016-0871-8. [CrossRef] [Google Scholar]
  • Liu Y, Zhang Z, Peng Z, Ling M, Shen C, Liu W, Sun X, Shen C, Liu K, Sun W. 2014. Mysterious abrupt carbon-14 increase in coral contributed by a comet. Sci Rep 4, 3728. [CrossRef] [Google Scholar]
  • Livshits MA, Rudenko GV, Katsova MM, Myshyakov II. 2015. The magnetic virial theorem and the nature of flares on the Sun and other G stars. Adv Space Res 55: 920–926. [CrossRef] [Google Scholar]
  • Lockwood JA, Webber WR, Hsieh L. 1974. Solar flare proton rigidity spectra deduced from cosmic ray neutron monitor observations. J Geophys Res 79(28): 4149–4185. [CrossRef] [Google Scholar]
  • Lu ET, Hamilton RJ, McTiernan JM, Bromund KR. 1993. Solar flares and avalanches in driven dissipative systems. Astrophys J 412: 841–852. [NASA ADS] [CrossRef] [Google Scholar]
  • Maehara H, Shibayama T, Notsu S, Notsu Y, Nagao T, Kusaba S, Honda S, Nogami D, Shibata K. 2012. Superflares on solar-type stars. Nat Res Lett 485: 478–485. [CrossRef] [Google Scholar]
  • Makhmutov V, Raulin J-P, De Mendonca RRS, Bazilevskaya GA, Correia E, Kaufmann P, Marun A, Fernandez G, Echer E. 2013. Analysis of cosmic ray variations observed by the CARPET in association with solar flares in 2011–2012. IOP Conf Ser 409: 012185. DOI: 10.1088/1742-6596/409/1/012185. [CrossRef] [Google Scholar]
  • Makhmutov VS, Bazilevskayaa GA, Stozhkov YI, Raulin J-P, Philippov MV. 2015. Analysis of cosmic ray variations recorded in October–December 2013. Bull RAS Phys 79: 570–572. [Google Scholar]
  • Mangeard P-S, Ruffolo D, Sáiz A, Madlee S, Nutaro T. 2016. Monte Carlo simulation of the neutron monitor yield function. J Geophys Res (Space Phys) 121: 7435–7448. [Google Scholar]
  • Matthiä D, Heber B, Reitz G, Meier M, Sihver L, Berger T, Herbst K. 2009a. Temporal and spatial evolution of the solar energetic particle event on 20 January 2005 and resulting radiation doses in aviation. J Geophys Res (Space Phys) 114(8): A08104. [Google Scholar]
  • Matthiä D, Heber B, Reitz G, Sihver L, Berger T, Meier M. 2009b. The ground level event 70 on December 13th, 2006 and related effective doses at aviation altitudes. Radiat Prot Dosim 136(4): 304–310. [CrossRef] [Google Scholar]
  • Mavromichalaki H, Souvatzoglou G, Sarlanis C, Mariatos G, Papaioannou A, Belov A, Eroshenko E, Yanke V for the NMDB team. 2009. Using the real-time neutron monitor database to establish an alert signal. Proc 31st Int Cosmic Ray Conf, Lodz, Poland, paper icrc1381. [Google Scholar]
  • McCracken KG. 1959a. The production of cosmic radiation by a solar flare on August 31, 1956. Nuovo Cimento 13: 1074–1080. DOI: 10.1007/BF02725118. [CrossRef] [Google Scholar]
  • McCracken KG. 1959b. A correlation between the emission of white flares and cosmic radiation by a solar flare. Nuovo Cimento 13: 1081–1084. [CrossRef] [Google Scholar]
  • McCracken KG. 2007. High frequency of occurrence of large solar energetic particle events prior to 1958 and a possible repetition in the near future. Space Weather 5: S07004. DOI: 10.1029/2006SW000295. [CrossRef] [Google Scholar]
  • McCracken KG, Beer J. 2007. Long-term changes in the cosmic ray intensity at Earth, 1428–2005. J Geophys Res 112: A10101. DOI: 10.1029/2006JA012117. [CrossRef] [Google Scholar]
  • McCracken KG, Beer J. 2015. The annual cosmic-radiation intensities 1391–2014; The annual heliospheric magnetic field strengths 1391–1983, and Identification of solar cosmic-ray events in the cosmogenic record 1800–1983. Sol Phys 290: 3051–3069. DOI: 10.1007/s11207-015-0777-x. [NASA ADS] [CrossRef] [Google Scholar]
  • McCracken KG, Dreschhoff GAM, Zeller EJ, Smart DF, Shea MA. 2001a. Solar cosmic ray events for the period 1561–1994. 1. Identification in polar ice, 1561–1950. J Geophys Res 106(A10): 21585–21598. [NASA ADS] [CrossRef] [Google Scholar]
  • McCracken KG, Dreschhoff GAM, Smart DF, Shea MA. 2001b. Solar cosmic ray events for the period 1561–1994. 2. The Gleissberg periodicity. J Geophys Res 106(10): 21599–21609. [CrossRef] [Google Scholar]
  • McDonald FB, Editor. 1963. Solar Proton Manual, NASA TR R-169. NASA, Washington, DC. [Google Scholar]
  • Mekhaldi F, Muscheler R, Adolphi F, Aldahan A, Beer J, et al. 2015. Multiradionuclide evidence for the solar origin of the cosmic-ray events of AD 774/5 and 993/4. Nat Commun 6: 8611. DOI: 10.1038/ncomms9611. [Google Scholar]
  • Mekhaldi F, McConnell JR, Adolphi F, Arienzo MM, Chellman NJ, Maselli OJ, Moy AD, Plummer CT, Sigl M, Muscheler R. 2017. No coincident nitrate enhancement events in polar ice cores following the largest known solar storms. J Geophys Res Atmos 122: 11900–11913. DOI: 10.1002/2017JD027325. [Google Scholar]
  • Melott AL. 2014. Comment on: “Mysterious abrupt carbon-14 increase in coral contributed by a comet” Yi Liu et al. Sci Rep 4: 3728, DOI: 10.1038/srep03728. [Google Scholar]
  • Melott AL, Thomas BC, Laird CM, Neuenswander B, Atri D. 2016. Atmospheric ionization by high-fluence, hard-spectrum solar proton events and their probable appearance in the ice core archive. J Geophys Res Atmos 121: 3017–3033. DOI: 10.1002/2015JD024064. [Google Scholar]
  • Mewaldt RA, Looper MD, Cohen CMS, Mason GM, Haggerty DK, Desai MI, Labrador AW, Leske RA, Mazur JE. 2005a. Solar-particle energy spectra during the large events of October–November 2003 and January 2005. Proc 29th Int Cosmic Ray Conf, Pune, India 1: 111–114. [Google Scholar]
  • Mewaldt RA, Cohen CMS, Labrador AW, Leske RA, Desai MI, Looper MD, Labrador AW, Mazur JE, Selesnick RS, Haggerty DK. 2005b. Proton, helium, and electron spectra during the large solar particle events of October–November 2003. J Geophys Res 110: 09S18. [Google Scholar]
  • Mewaldt RA, Cohen CMS, Haggerty DK, Mason GM, Looper ML, von Rosenvinge TT, Wiedenbeck ME. 2007. Radiation risks from large solar energetic particle events. AIP Conf Proc 932: 277–282. DOI: 10.1063/1.2778975. [CrossRef] [Google Scholar]
  • Mironova IA, Aplin KL, Arnold F, Bazilevskaya GA, Harrison RG, Krivolutsky AA, Nicoll KA, Rozanov EV, Turunen E, Usoskin IG. 2015. Energetic particle influence on the Earth’s atmosphere. Space Sci Rev 194: 1–96. [Google Scholar]
  • Miroshnichenko LI. 1990. Dynamics and prediction of radiation characteristics of solar cosmic rays, Doctoral Dissertation, IZMIRAN, Moscow, 326 p. [Google Scholar]
  • Miroshnichenko LI. 1996. Empirical model for the upper limit spectrum for solar cosmic rays at the Earth’s orbit. Rad Meas 26: 421–425. [CrossRef] [Google Scholar]
  • Miroshnichenko LI. 2001. Solar cosmic rays, Kluwer Academic Publishers, Dordrecht, The Netherlands. [CrossRef] [Google Scholar]
  • Miroshnichenko LI. 2003a. Radiation Hazard in Space, Kluwer Academic Publishers, The Netherlands. [CrossRef] [Google Scholar]
  • Miroshnichenko LI. 2003b. High-energy cutoff for solar cosmic rays by the data of large non-standard detectors. Izvestiya RAN Ser Phys 67: 462–464. [Google Scholar]
  • Miroshnichenko LI. 2008. Solar cosmic rays in the system of solar-terrestrial relations (Review). J Atmos Sol Terr Phys (Special Issue of ISROSES Proceedings) 70: 450–466. [CrossRef] [Google Scholar]
  • Miroshnichenko LI. 2014. Solar cosmic rays: Fundamentals and applications, 2nd edn, Springer International Publishing, Switzerland. [Google Scholar]
  • Miroshnichenko LI. 2018. Solar cosmic rays: 75 years of research. Phys Usp 188(4): 345–376. DOI: 10.3367/UFNe.2017.03.038091. [CrossRef] [Google Scholar]
  • Miroshnichenko LI, Nymmik RA. 2014. Extreme fluxes in solar energetic particle events: Methodological and physical limitations. Rad Meas 61: 6–15. [CrossRef] [Google Scholar]
  • Miroshnichenko LI, Pérez-Peraza JA. 2008. Astrophysical aspects in the studies of solar cosmic rays (Invited Review). IJMPA 23: 1–141. [CrossRef] [Google Scholar]
  • Miroshnichenko LI, Yanke VG. 2016. Size distributions of solar proton events: Methodological and physical restrictions. Sol Phys 291: 3685–3704. DOI: 10.1007/s11207-016-1002-2. [CrossRef] [Google Scholar]
  • Miroshnichenko LI, Pérez-Peraza J, Alvarez-Madrigal M, Sorokin MO, Vashenyuk EV, Gallegos-Cruz A. 1990. Two relativistic components in some solar proton events. Proc 21st Int Cosmic Ray Conf, Adelaide, Australia, 5: 5–8. [Google Scholar]
  • Miroshnichenko LI, Pérez-Peraza JA, Velasco-Herrera VM, Zapotitla J, Vashenyuk EV. 2012. Oscillations of galactic cosmic rays and solar indices before the arrival of relativistic solar protons. Geomagn Aeron 52(5): 547–560. [CrossRef] [Google Scholar]
  • Miroshnichenko LI, Vashenyuk EV, Pérez-Peraza JA. 2013. Solar cosmic rays: 70 years of ground-based observations. Geomagn Aeron 53: 541–560. [CrossRef] [Google Scholar]
  • Mishev A, Usoskin I. 2015. Effective dose calculation at flight altitudes with the newly computed yield function. Proc 34th ICRC, The Hague, The Netherland, http://inspirehep.net/record/1483507/files/PoS(ICRC2015)158.pdf. [Google Scholar]
  • Mishev A, Usoskin I. 2016. Application of a full chain analysis using neutron monitor data for space weather studies. 25th European Cosmic Ray Symposium Turin, Italy, 4–9 September. [Google Scholar]
  • Mishev A, Velinov PIY. 2010. The effect of model assumptions on computations of cosmic ray induced ionization in the atmosphere. J Atmos Sol Terr Phys 72: 476–481. [CrossRef] [Google Scholar]
  • Mishev AL, Usoskin IG, Kovaltsov GA. 2013. Neutron monitor yield function: New improved computations. J Geophys Res (Space Phys) 118: 2783–2788. DOI: 10.1002/jgra.50325. [Google Scholar]
  • Mishev AL, Adibpour F, Usoskin IG, Felsberger E. 2015. Computation of dose rate at flight altitudes during ground level enhancements no. 69, 70 and 71. Adv Space Res 55: 354–362. [CrossRef] [Google Scholar]
  • Mishev A, Usoskin I, Kocharov L. 2017. Using global neutron monitor network data for GLE analysis: Recent results. ICRC2017_147, Bexco, Busan, Korea. [Google Scholar]
  • Miyake F, Nagaya K, Masuda K, Nakamura T. 2012. A signature of cosmic-ray increase in AD 774–775 from tree rings in Japan. Nature 486: 240–242. DOI: 10.1038/nature11123. [NASA ADS] [CrossRef] [Google Scholar]
  • Miyake F, Masuda K, Nakamura T. 2013. Another rapid event in the carbon-14 content of tree rings. Nat Commun 4: 1748. DOI: 10.1038/ncomms2783. [Google Scholar]
  • Nagashima K, Sakakibara S, Morishita I. 1991. Quiescence of GLE-producible solar proton eruptions during the transition phase of heliomagnetic polarity reversal near the solar activity-maximum period. J Geomagn Geoelectr 43(8): 685–689. [CrossRef] [Google Scholar]
  • NOAA SESC. 2018. Solar proton events 1976 present, https://umbra.nascom.nasa.gov/SEP/, ftp://ftp.swpc.noaa.gov/pub/indices/SPE.txt [Google Scholar]
  • Nogami D, Notsu Y, Honda S, Maehara H, Notsu S, Shibayama T, Shibata K. 2014. Two sun-like superflare stars rotating as slow as the Sun. Publ Astron Soc Japan 66(2): L4. DOI: 10.1093/pasj/psu012. [NASA ADS] [CrossRef] [Google Scholar]
  • Núñez M. 2015. Real-time prediction of the occurrence and intensity of the first hours of > 100 MeV solar energetic proton events. Space Weather 13: 807–819. DOI: 10.1002/2015SW001256. [CrossRef] [Google Scholar]
  • Núñez M, Reyes P, Malandraki OE. 2017. Real-time prediction of the occurrence of GLE events. Space Weather 15: 861–873. DOI: 10.1002/2017SW001605. [CrossRef] [Google Scholar]
  • Nymmik RA. 1999a. SEP event distribution function as inferred from space born measurements and lunar rock isotopic data. Proc 26th Int Cosmic Ray Conf, Salt Lake City, USA 6: 268–271. [Google Scholar]
  • Nymmik RA. 1999b. Probabilistic model for fluences and peak fluxes of solar energetic particles. Rad Meas 30: 287–296. [Google Scholar]
  • Nymmik RA. 2011. Some problems with developing a standard for determining solar energetic particle fluxes. Adv Space Res 47: 622–628. [CrossRef] [Google Scholar]
  • Ogurtsov MG, Oinonen M. 2014. Evidence of the solar Gleissberg cycle in the nitrate concentration in polar ice. J Atmos Sol Terr Phys 109: 37–42. [CrossRef] [Google Scholar]
  • Oh SY, Bieber JW, Clem J, Evenson P, Pyle R, Yi Y, Kim J-P. 2012. South Pole neutron monitor forecasting of solar proton radiation intensity. Space Weather 10: S05004. DOI: 10.1029/2012SW000795. [Google Scholar]
  • Panasyuk M, Kalegaev V, Miroshnichenko L, Kuznetsov N, Nymmik R, Popova E, Yushkov B, Benghin V. 2018. Near-Earth radiation environment for extreme solar and geomagnetic conditions, in: Buzulukova N, Editor. Extreme events in geospace: Origins, predictability, and consequences, Elsevier S&T Books, 349–372, https://www.elsevier.com/books/extreme-events-in-geospace/buzulukova/978-0-12-812700-1, ISBN 9780128127001. DOI: 10.1029/2005GL023336. [CrossRef] [Google Scholar]
  • Pavlov AK, Blinov AV, Konstantinov AN, Ostryakov VM, Vasiliev GI, Vdovina MA, Volkov PA. 2013. AD 775 pulse of cosmogenic nuclide production as imprint of a galactic gamma-ray burst. Mon Not R Astron Soc 435, 2878–2884. DOI: 10.1093/mnras/stt1468. [CrossRef] [Google Scholar]
  • Pérez-Peraza J, Juárez-Zuñiga A. 2015. Prognosis of GLEs of relativistic solar protons. Astrophys J 803: 27. DOI: 10.1088/0004-637X/803/1/27. [CrossRef] [Google Scholar]
  • Pérez-Peraza J, Velasco VM, Zapotitla J, Vashenyuk EV, Miroshnichenko LI. 2009. Pulse width modulation analysis of ground level proton events. Proc 31st Int Cosmic Ray Conf, Lodz, Poland, paper ID 1411, http://icrc2009.uni.lodz.pl/proc/html/. [Google Scholar]
  • Pérez-Peraza J, Velasco-Herrera V, Zapotitla J, Miroshnichenko LI, Vashenyuk EV, Libin IY. 2011. Classification of GLEs as a function of their spectral content for prognostic goals. Proc 32nd Int Cosmic Ray Conf, Beijing, China 10: 149–152. [Google Scholar]
  • Poluianov S, Usoskin I, Mishev A, Moraal H, Krüger H, Casasanta G, Traversi R, Udisti R. 2015. Mini neutron monitors at concordia research station, central antarctica. Research Paper J Astron Space Sci 32(4): 281–287. DOI: 10.5140/JASS.2015.32.4.281 [CrossRef] [Google Scholar]
  • Poluianov SV, Usoskin IG, Mishev AL, Shea MA, Smart DF. 2017. GLE and sub-GLE redefinition in the light of high-altitude polar neutron monitors. Sol Phys 292: 176. [Google Scholar]
  • Popova EP, Kuznetsov NV, Panasyuk MI. 2017. Predicting GCR fluxes for future space missions. Bull Russ Acad Sci Phys Physics 81(2): 173–176. DOI: 10.1007/s11207-017-1202-4. [CrossRef] [Google Scholar]
  • Priest E, Forbes T. 2000. Magnetic reconnection (MHD theory and applications). Cambridge University Press. [Google Scholar]
  • Raukunen O, Vainio R, Tylka AJ, Dietrich WF, Jiggens P, Heynderickx D, Dierckxsens M, Crosby N, Ganse U, Siipola R. 2018. Two solar proton fluence models based on ground level enhancement observations. J Space Weather Space Clim 8: A04. DOI: 10.1051/swsc/2017031. [CrossRef] [EDP Sciences] [Google Scholar]
  • Reames DV. 1999. Particle acceleration at the Sun and in the heliosphere. Space Sci Rev 90: 413–491. [NASA ADS] [CrossRef] [Google Scholar]
  • Reames DV. 2013. The two sources of solar energetic particles. Space Sci Rev 175: 53–92. [Google Scholar]
  • Reames DV. 2017. Solar energetic particles. A modern primer on understanding sources, acceleration and propagation, Springer International Publishing AG, eBook. [CrossRef] [Google Scholar]
  • Reames DV, Ng CK. 1998. Streaming-limited intensities of solar energetic particles. Astrophys J 504: 1002–1005. [NASA ADS] [CrossRef] [Google Scholar]
  • Reames DV, Ng CK. 2010. Streaming-limited Intensities of solar energetic particles on the intensity plateau. Astrophys J 723: 1286–1293. [CrossRef] [Google Scholar]
  • Ridley B, Walega J, Montzka D, Grahek F, Atlas E, et al. 2000. Is the arctic surface layer a source and sink of NOx in winter/spring? J Atmos Chem 36: 1–22. [CrossRef] [Google Scholar]
  • Schmieder B. 2017. Extreme solar storms based on solar magnetic field. J Atmos Sol Terr Phys 17: 1–6. DOI: 10.1016/j.jastp.2017.07.018. [Google Scholar]
  • Schrijver CJ, Beer J, Baltensperger U, Cliver E, Gudel M, et al. 2012. Estimating the frequency of extremely energetic solar events, based on solar, stellar, lunar, and terrestrial records. J Geophys Res 117: A08103. DOI: 10.1029/2012JA017706. [Google Scholar]
  • Shafer GV, Shafer YG. 1984. Precise observations of cosmic rays in Yakutsk. Nauka, Novosibirsk. [Google Scholar]
  • Shea MA, Smart DF. 1982. Possible evidence for a rigidity-dependent release of relativistic protons from the solar corona. Space Sci Rev 32: 251–271. [Google Scholar]
  • Shea MA, Smart DF. 1990. A summary of major solar proton events. Sol Phys 127(2): 297–320. [NASA ADS] [CrossRef] [Google Scholar]
  • Shea MA, Smart DF. 1992. Recent and historical solar proton events. Radiocarbon 34(2): 255–262. [CrossRef] [Google Scholar]
  • Shea MA, Smart DF. 1993. History of energetic solar protons for the past three solar cycles including cycle 22 update, in: Swenberg CE, et al. Editors. Biological effects of solar and galactic cosmic radiation, Part B. Plenum Press, New York, NY. 37–71. [CrossRef] [Google Scholar]
  • Shea MA, Smart DF. 2012. Space weather and the ground-level solar proton events of the 23rd solar cycle. Space Sci Rev 171: 161–188. [Google Scholar]
  • Shea MA, Smart DF, Dreschhoff GAM. 1999. Identification of major proton fluence events from nitrates in polar ice cores. Rad Meas 30(3): 287–296. [Google Scholar]
  • Shea MA, Smart DF, McCracken KG, Dreschhoff GAM, Spence HE. 2006. Solar proton events for 450 years: The Carrington Event in perspective. Adv Space Res 38: 232–238. [CrossRef] [Google Scholar]
  • Shibata K, Isobe H, Hillier A, Choudhuri AR, Maehara H, et al. 2013. Can superflares occur on our Sun? Publ Astron Soc Japan 65: 49. [CrossRef] [Google Scholar]
  • Shibayama T, Maehara H, Notsu S, Notsu Y, Nagao T, Honda S, Ishii TT, Nogami D, Shibata K. 2013. Superflares on solar-type stars observed with Kepler. I. Statistical properties of superflares. Astrophys J Suppl Series 209: 5. DOI: 10.1088/0067-0049/209/1/5. [Google Scholar]
  • Shimizu T. 1995. Energetics and occurrence rate of active-region transient brightenings and implications for the heating of the active-region corona. Publ Astron Soc Japan 47: 251–263. [Google Scholar]
  • Sigl M, Winstrup M, McConnell JR, Welten KC, Plunkett G, et al. 2015. Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature 523: 543–549. [NASA ADS] [CrossRef] [Google Scholar]
  • Simpson JA. 1957. Cosmic-radiation neutron intensity monitor. Annals of the IGY, Pergamon Press, London, vol. 4, 351–373. [Google Scholar]
  • Simpson JA. 1990. Astrophysical phenomena discovered by cosmic rays and solar flare Ground Level Events: The early years. Proc 21st Int Cosmic Ray Conf, Invited Papers, Highlight Papers, Miscellaneous, Adelaide, Australia, 12, 187–195. [Google Scholar]
  • Sinnhuber M. 2016. Commentary on “Atmospheric ionization by high-fluence, hard-spectrum solar proton events and their probable appearance in the ice core archive” by A.L. Melott et al. and “Nitrate ion spikes in ice cores not suitable as proxies for solar proton events” by K.A. Duderstadt et al. J Geophys Res Atmos 121: 3034–3035. DOI: 10.1002/2016JD024950. [CrossRef] [Google Scholar]
  • Siscoe G, Crooker NU, Clauer CR. 2006. Dst of the Carrington storm of 1859. Adv Space Res 38: 173–179. DOI: 10.1016/j.asr.2005.02.10. [CrossRef] [Google Scholar]
  • Smart DF, Shea MA. 1989. Solar proton events during the past three solar cycles. J Spacecr Rockets 26(6): 403–415. [CrossRef] [Google Scholar]
  • Smart DF, Shea MA. 1991. A comparison of the magnitude of the 29 September 1989 high energy event with solar cycle 17, 18 and 19 events. Proc 22nd Int Cosmic Ray Conf, Dublin, Ireland, 3, 101–104. [Google Scholar]
  • Smart DF, Shea MA. 1996. The longitudinal distribution of solar flares associated with solar proton events at the Earth. Adv Space Res 17: 113–116. [CrossRef] [Google Scholar]
  • Smart DF, Shea MA, McCracken KG. 2006. The Carrington event: Possible solar proton intensity-time profile. Adv Space Res 38: 215–225. [CrossRef] [Google Scholar]
  • Smart DF, Shea MA, Melott AL, Laird CM. 2014. Low time resolution analysis of polar ice cores cannot detect impulsive nitrate events. J Geophys Res (Space Phys) 119: 9430–9440. DOI: 10.1016/j.asr.2005.02.10. [CrossRef] [Google Scholar]
  • Smart DF, Shea MA, Melott AL, Laird CM. 2016. Reply to comment by E.W. Wolff et al. on “Low time resolution analysis of polar ice cores cannot detect impulsive nitrate events”. J Geophys Res (Space Phys) 121: 1925–1933. DOI: 10.1002/2015JA021913. [CrossRef] [Google Scholar]
  • Somov BV. 2013a. Plasma Astrophysics, Part I, Fundamental and Practice, 2nd edn. Springer Science+Business Media, New York, NY, ISBN 978-1-4614-4282-0, 524 p. [Google Scholar]
  • Somov BV. 2013b. Plasma astrophysics, Part II, reconnection and flares, 2nd edn. Springer Science+Business Media, New York, NY, ISBN 978-1-4614-4294-3, 524 p. [Google Scholar]
  • Song P. 2001. Foreword. J Geophys Res 106(A10): 20945–20946. [CrossRef] [Google Scholar]
  • Steljes JF, Carmichael H, McCracken KG. 1961. Characteristics and fine structure of the large cosmic-ray fluctuations in November 1960. J Geophys Res, 66(5): 1363–1377. [CrossRef] [Google Scholar]
  • Stozhkov YI, Svirzhevsky NS, Bazilevskaya GA, Kvashnin AN, Makhmutov VS, Svirzhevskaya AK. 2009. Long-term (50 years) measurements of cosmic ray fluxes in the atmosphere. Adv Space Res 44: 1124–1137. [CrossRef] [Google Scholar]
  • Sukhodolov T, Usoskin I, Rozanov E, Asvestari E, Ball WT, et al. 2017. Atmospheric impacts of the strongest known solar particle storm of 775 AD. Nature Sci Rep 7: 45257. DOI: 10.1038/srep45257. [Google Scholar]
  • Thakur N, Gopalswamy N, Xie H, Mäkelä P, Yashiro S, Akiyama S, Davila JM. 2014. Ground level enhancement in the 2014 January 6 solar energetic particle event. Astrophys J Lett 790(1): L13. DOI: 10.1088/2041-8205/790/1/L13. [Google Scholar]
  • Thomas BC, Arkenberg KR, Snyder BR II, Melott AL. 2013. Terrestrial effects of possible astrophysical sources of an AD 774–775 increase in carbon-14 production. Geophys Res Lett 40: 1237–1240. DOI: 10.1002/grl.50222. [NASA ADS] [CrossRef] [Google Scholar]
  • Timashkov DA, Balabin YV, Borog VV, Kompaniets KG, Petrukhin AA, Room DA, Vashenyuk EV, Shutenko VV, Yashin II. 2007. Ground-Level Enhancement of December 13, 2006 in muon hodoscopes data. Proc 30th Int Cosmic Ray Conf, Merida, Mexico, 3–11 July, 1, 209–212. [Google Scholar]
  • Toptygin IN. 1985. Cosmic rays in interplanetary magnetic fields. D. Reidel Publishing Co., Dordrecht, The Netherlands. [CrossRef] [Google Scholar]
  • Torrence C, Compo GP. 1998. A practical guide to wavelet analysis. Bull Am Meteorol Soc 79: 61–78. [CrossRef] [Google Scholar]
  • Townsend LW, Zapp EN, Stephens DL Jr, Hoff JL. 2003. Carrington flare of 1859 as a prototypical worst-case solar energetic particle event. IEEE Transact Nucl Sci 50: 2307–2309. [CrossRef] [Google Scholar]
  • Townsend LW, Stephens DL Jr, Hoff JL, Zapp EN, Moussa HM, Miller TM, Campbell CE, Nichols TF. 2006. The Carrington event: Possible doses to crews in space from a comparable event. Adv Space Res 38: 226–231. [CrossRef] [Google Scholar]
  • Traversi R, Becagli S, Poluianov S, Severi M, Solanki SK, Usoskin IG, Udisti R. 2016. The Laschamp geomagnetic excursion featured in nitrate record from EPICA-Dome C ice core. Sci Rep 6: 20235. DOI: 10.1038/srep20235. [CrossRef] [Google Scholar]
  • Tsurutani BT, Gonzalez WD, Lakhina GS, Alex S. 2003. The extreme magnetic storm of 1–2 September 1859. J Geophys Res 108(A7): 1268. DOI: 10.1029/2002JA009504. [Google Scholar]
  • Tylka AJ, Dietrich WF. 2009. A new and comprehensive analysis of proton spectra in ground-level enhanced (GLE) solar particle events. Proc 31st Int Cosmic Ray Conf, Lodz, Poland, paper icrc0273, http://icrc2009.uni.lodz.pl/proc/html/. [Google Scholar]
  • Tylka AJ, Dietrich WF. 2010. Ground-Level Enhanced (GLE) solar particle events at solar minimum. SOHO-23: understanding a peculiar solar minimum. ASP Conf Ser, 428, 329–334. [Google Scholar]
  • Usoskin IG, Kovaltsov GA. 2012. Occurrence of extreme solar particle events: Assessment from historical proxy data. Astrophys J 757: 92. [NASA ADS] [CrossRef] [Google Scholar]
  • Usoskin IG, Kovaltsov GA. 2015. The carbon-14 spike in the 8th century was not caused by a cometary impact on Earth. Icarus 260: 475–476. [CrossRef] [Google Scholar]
  • Usoskin IG, Kovaltsov GA, Mironova IA, Tylka AJ, Dietrich WF. 2011. Ionization effect of solar particle GLE events in low and middle atmosphere. Atmos Chem Phys 11: 1979–1988. [NASA ADS] [CrossRef] [Google Scholar]
  • Usoskin IG, Kromer B, Ludlow F, Beer J, Friedrich M, Kovaltsov GA, Solanki SK, Wacker L. 2013. The AD775 cosmic event revisited: the Sun is to blame. A&A 552, L3. DOI: 10.1051/0004-6361/201321080. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Usoskin I, Ibragimov A, Shea M, Smart D. 2015. Database of ground level enhancements (GLE) of high energy solar proton events. Proc 34th Int Cosmic Ray Conf, 30 July–6 August, The Hague, the Netherlands, paper ID 054, http://pos.sissa.it/archive/conferences/236/054/ICRC2015_054.pdf [Google Scholar]
  • Vallance JA. 1992. Historical review of great auroras. Can J Phys, 70, 479–487. [CrossRef] [Google Scholar]
  • Vashenyuk EV, Balabin YV, Stoker P. 2007. Responses to solar cosmic rays of neutron monitors of a various design. Adv Space Res 40: 331–337. DOI: 10.1016/j.asr.2007.05.018. [CrossRef] [Google Scholar]
  • Vashenyuk EV, Balabin YV, Miroshnichenko LI. 2008. Relativistic solar protons in the GLE of 23 February 1956: New study. Adv Space Res 41(6): 926–935. [CrossRef] [Google Scholar]
  • Vashenyuk EV, Balabin YV, Gvozdevsky BB. 2011. Features of relativistic solar proton spectra derived from GLE modeling. Astrophys Space Sci Trans 7: 459–463. [CrossRef] [Google Scholar]
  • Vargas-Cárdenas B, Valdés-Galicia JF. 2012. Identification of high energy solar particle signals on the Mexico City neutron monitor database. Adv Space Res 49: 1593–1597. [CrossRef] [Google Scholar]
  • Venkatesan D. 1958. Changes in amplitude of the 27-day variation in cosmic ray intensity during the solar cycle of activity. Tellus 10(1): 117–125. [CrossRef] [Google Scholar]
  • Veselovsky IS, Yakovchuk OS. 2011. On the prediction of solar proton events based on the data of ground neutron monitors. Astron Vestnik (Solar System Res) 45(4): 365–375. [Google Scholar]
  • Wang R. 2009. Did the 2000 July 14 solar flare accelerate protons to ≥ 40 GeV? Astropart Phys 31(2): 149–155. [CrossRef] [Google Scholar]
  • Wang FY, Yu H, Zou YC, Dai ZG, Cheng KS. 2017. A rapid cosmic-ray increase in BC 3372–3371 from ancient buried tree rings in China. Nat Comm 8: 1487. [NASA ADS] [CrossRef] [Google Scholar]
  • Webber WR. 1963. An evaluation of the radiation hazard due to solar particle events. Boeing Rept. D2-90469, Seattle, WA, December. [Google Scholar]
  • Webber WR, Higbie PR, McCracken KG. 2007. Production of the cosmogenic isotopes 3H, 7Be, 10Be, and 36Cl in the Earth’s atmosphere by solar and galactic cosmic rays. J Geophys Res 112: A10106. [Google Scholar]
  • Wichmann R, Fuhrmeister B, Wolter U, Nagel E. 2014. Kepler super-flare stars: what are they? A&A 567: A36. DOI: 10.1051/0004-6361/201423717. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Wolff EW, Jones AE, Bauguitte SJ-B, Salmon RA. 2008. The interpretation of spikes and trends in concentration of nitrate in polar ice cores, based on evidence from snow and atmospheric measurements. Atmos Chem Phys 8: 5627–5634. DOI: 10.5194/acp-8-5627-2008. [CrossRef] [Google Scholar]
  • Wolff EW, Bigler M, Curran MAJ, Dibb JE, Frey MM, Legrand M, McConnell JR. 2012. The Carrington event not observed in most ice core nitrate records. Geophys Res Lett 39: L08503. DOI: 10.1029/2012GL051603. [NASA ADS] [CrossRef] [Google Scholar]
  • Wolff EW, Bigler M, Curran MAJ, Dibb JE, Frey MM, Legrand M, McConnell JR. 2016. Comment on “Low time resolution analysis of polar ice cores cannot detect impulsive nitrate events” by D.F. Smart et al. J Geophys Res (Space Phys) 121: 1920–1924. DOI: 10.1002/2015JA021570. [CrossRef] [Google Scholar]
  • Xapsos MA, Summers GP, Barth JL, Stassinopoulos EG, Burke EA. 2000. Probability model for cumulative solar proton event fluences. IEEE Trans Nucl Sci 47: 486–490. [NASA ADS] [CrossRef] [Google Scholar]
  • Zank GP, Rice WKM, Wu CC. 2000. Particle acceleration and coronal mass ejection driven shocks: A theoretical model. J Geophys Res 105A: 25079–25095. [Google Scholar]
  • Zeller EJ, Dreschhoff GAM. 1995. Anomalous nitrate concentrations in polar ice cores – do they result from solar particle injections into the polar atmosphere? Geophys Res Lett 22(18): 2521–2524. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.