J. Space Weather Space Clim.
Volume 8, 2018
Flares, coronal mass ejections and solar energetic particles and their space weather impacts
Article Number A08
Number of page(s) 14
Published online 13 February 2018
  • Balan N, Skoug R, Tulasi Ram S, et al. 2014. CME front and severe space weather. J Geophys Res 119: 10041–10058, DOI: 10.1002/2014JA020151 [CrossRef]
  • Bemporad A, Mancuso S. 2010. First complete determination of plasma physical parameters across a coronal mass ejection-driven shock. ApJ 720: 130–143, DOI: 10.1088/0004-637X/720/1/130 [NASA ADS] [CrossRef]
  • Bemporad A, Mancuso S. 2011. Identification of Super- and Subcritical regions in shocks driven by coronal mass ejections. ApJL 739: L64, DOI: 10.1088/2041-8205/739/2/L64 [NASA ADS] [CrossRef]
  • Billings DE, A guide to the solar corona, Academic, New York, 1966
  • Brueckner GE, Howard RA, Koomen MJ, et al. 1995. The large angle spectroscopic coronagraph (LASCO). Sol Phys 162: 357–402, DOI: 10.1007/BF00733434 [NASA ADS] [CrossRef]
  • Cane HV, Reames DV, von Rosenvinge TT. 1988. The role of interplanetary shocks in the longitude distribution of solar energetic particles. J Geophys Res 93: 9555–9567, DOI: 10.1029/JA093iA09p09555 [NASA ADS] [CrossRef]
  • Carley EP, Long DM, Byrne JP, et al. 2013. Quasiperiodic acceleration of electrons by a plasmoid-driven shock in the solar atmosphere. Nature Phys 9: 811–816, DOI: 10.1038/nphys2767 [NASA ADS] [CrossRef]
  • Cliver EW, Kahler SW, Neidig DF, et al. 1995. Extreme “Propagation” of Solar Energetic Particles. In: Proc. 24th ICRC, vol. 4, N. Iucci & E. Lamanna (eds.), London: IUPAP, pp. 257–260
  • Cliver EW, Thompson BJ, Lawrence GR, et al. 2005. The Solar Energetic Particle Event of 16 August 2001: ∼400 MeV Protons Following an Eruption at ∼W180. In: Proc. 29th ICRC, vol. 1, B. Sripathi Acharya, S. Gupta, P. Jagadeesan, et al. (eds.), Mumbai: Tata Institute of Fundamental Research, pp. 121–124
  • Démoulin P, Vourlidas A, Pick M, et al. 2012. Initiation and development of the white-light and radio coronal mass ejection on 2001 April 15. ApJ 750: 147, DOI: 10.1088/0004-637X/750/2/147 [NASA ADS] [CrossRef]
  • Desai M, Giacalone J. 2016. Large gradual solar energetic particle events. Living Rev Solar Phys 13: 3, DOI: 10.1007/s41116-016-0002-5 [CrossRef]
  • Domingo V, Fleck B, Poland AI. 1995. The SOHO mission: an overview. Sol Phys 162: 1–37, DOI: 10.1007/BF00733425 [NASA ADS] [CrossRef]
  • Dulk GA, McLean DJ. 1978. Coronal magnetic fields. Sol Phys 57: 279–295, DOI: 10.1007/BF00160102 [NASA ADS] [CrossRef]
  • Fox NJ, Velli MC, Bale SD, et al. 2016. The solar probe plus mission: humanity's first visit to our star. Space Sci Rev 204: 7–48, DOI: 10.1007/s11214-015-0211-6 [CrossRef]
  • Frazin RA, Vásquez AM, Thompson WT, et al. 2012. Intercomparison of the LASCO-C2, SECCHI-COR1, SECCHI-COR2, and Mk4 Coronagraphs. Sol Phys 280: 273–293, DOI: 10.1007/s11207-012-0028-3 [CrossRef]
  • Gopalswamy N, Yashiro S, Akiyama S, et al. 2008. Coronal mass ejections, type II radio bursts, and solar energetic particle events in the SOHO era. Ann Geophys 26: 3033–3047, DOI: 10.5194/angeo-26-3033-2008 [NASA ADS] [CrossRef]
  • Hayes AP, Vourlidas A, Howard RA. 2001. Deriving the electron density of the solar corona from the inversion of total brightness measurements. ApJ 548: 1081–1086, DOI: 10.1086/319029 [NASA ADS] [CrossRef]
  • Howard RA, Moses JD, Vourlidas A, et al. 2008. Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci Rev 136: 67–115, DOI: 10.1007/s11214-008-9341-4 [NASA ADS] [CrossRef]
  • Howard RA, Vourlidas A, Korendyke CM, et al. 2013. The solar and heliospheric imager (SoloHI) instrument for the solar orbiter mission. In: Proc. SPIE, Solar Physics and Space Instrumentation V, S. Fineshi, J. Fennely (eds.), San Diego: CA, 8862, 88620H, DOI: 10.1117/12.2027657
  • Kaiser ML, Kucera TA, Davila JM, et al. 2008. The STEREO mission: an introduction. Space Sci Rev 136: 5–16, DOI: 10.1007/s11214-007-9277-0 [NASA ADS] [CrossRef]
  • Kouloumvakos A, Patsourakos S, Hillaris A, et al. 2014. CME expansion as the driver of Metric Type II shock emission as revealed by self-consistent analysis of high-cadence EUV images and radio spectrograms. Sol Phys 289: 2123–2139, DOI: 10.1007/s11207-013-0460-z [NASA ADS] [CrossRef]
  • Kozarev KA, Korreck KE, Lobzin VV, et al. 2011. Off-limb solar coronal wavefronts from SDO/AIA extreme-ultraviolet observations? Implications for particle production. ApJL 733: L25, DOI: 10.1088/2041-8205/733/2/L25 [NASA ADS] [CrossRef]
  • Kwon R-Y, Vourlidas A. 2017. Investigating the wave nature of the outer envelope of halo coronal mass ejections. ApJ 836: 246, DOI: 10.3847/1538-4357/aa5b92 [CrossRef]
  • Kwon R-Y, Ofman L, Olmedo O, et al. 2013a. STEREO observations of fast magnetosonic waves in the extended solar corona associated with EIT/EUV waves. ApJ 766: 55, DOI: 10.1088/0004-637X/766/1/55 [CrossRef]
  • Kwon R-Y, Kramar M, Wang T, et al. 2013b. Global coronal seismology in the extended solar corona through fast magnetosonic waves observed by STEREO SECCHI COR1. ApJ 776: 55, DOI: 10.1088/0004-637X/776/1/55 [NASA ADS] [CrossRef]
  • Kwon R-Y, Zhang J, Olmedo O. 2014. New insights into the physical nature of coronal mass ejections and associated shock waves within the framework of the three-dimensional structure. ApJ, 794: 148, DOI: 10.1088/0004-637X/794/2/148 [NASA ADS] [CrossRef]
  • Lario D, Raouafi NE, Kwon R-Y, et al. 2014. The solar energetic particle event on 2013 April 11: an investigation of its solar origin and longitudinal spread. ApJ 797: 8, DOI: 10.1088/0004-637X/797/1/8 [NASA ADS] [CrossRef]
  • Lario D, Kwon R-Y, Vourlidas A, et al. 2016. Longitudinal properties of a widespread solar energetic particle event on 2014 February 25: evolution of the associated CME shock. ApJ 819: 72, DOI: 10.3847/0004-637X/819/1/72 [NASA ADS] [CrossRef]
  • Leblanc Y, Dulk, George A, Bougeret J-L. 1998. Tracing the electron density from the corona to 1au. Sol Phys 183: 165–180, DOI: 10.1023/A:1005049730506 [NASA ADS] [CrossRef]
  • Long DM, Baker D, Williams DR, et al. 2015. The energetics of a global shock wave in the low solar corona. ApJ 799: 224, DOI: 10.1088/0004-637X/799/2/224 [NASA ADS] [CrossRef]
  • Long DM, Bloomfield DS, Chen PF, et al. 2017. Understanding the physical nature of coronal “EIT Waves”. Sol Phys 292: 7, DOI: 10.1007/s11207-016-1030-y [NASA ADS] [CrossRef]
  • Ma S, Raymond JC, Golub L, et al. 2011. Observations and interpretation of a low coronal shock wave observed in the EUV by the SDO/AIA. ApJ 738: 160, DOI: 10.1088/0004-637X/738/2/160 [NASA ADS] [CrossRef]
  • Mann G, Klassen A, Estel C, Thompson BJ. 1999. Coronal transient waves and coronal shock waves. In: Eighth SOHO Workshop: Plasma Dynamics and Diagnostics in the Solar Transition Region and Corona, ESA Special Publications, vol. 446, J-C. Vial & B. Kaldeich-Schümann (eds.), Noordwijk: ESA, 477
  • McComas DJ, Alexander N, Angold N, et al. 2016. Integrated Science Investigation of the Sun (ISIS): Design of the energetic particle investigation. Space Sci Rev 204: 187–256, DOI: 10.1007/s11214-014-0059-1 [CrossRef]
  • Müeller D, Marsden RG, Cyr OCS, et al. 2013. Solar Orbiter. Exploring the Sun-Heliosphere connection. Sol Phys 285: 25–70, DOI: 10.1007/s11207-012-0085-7 [NASA ADS] [CrossRef]
  • Neugebauer M, Giacalone J. 2005. Multispacecraft observations of interplanetary shocks: nonplanarity and energetic particles. J Geophys Res 110: A12106, DOI: 10.1029/2005JA011380 [CrossRef]
  • Newkirk G Jr. 1961. The solar corona in active regions and the thermal origin of the slowly varying component of solar radio radiation. ApJ 133: 983–1013, DOI: 10.1086/147104 [NASA ADS] [CrossRef]
  • Ontiveros V, Vourlidas A. 2009. Quantitative measurements of coronal mass ejection-driven shocks from LASCO observations. ApJ 693: 267–275, DOI: 10.1088/0004-637X/693/1/267 [NASA ADS] [CrossRef]
  • Park J, Innes DE, Bucik R, Moon Y-J. 2013. The source regions of solar energetic particles detected by widely separated spacecraft. ApJ 779: 184, DOI: 10.1088/0004-637X/779/2/184 [NASA ADS] [CrossRef]
  • Patsourakos S, Vourlidas A. 2012. On the nature and genesis of EUV waves: a synthesis of observations from SOHO, STEREO, SDO, and Hinode (Invited Review). Sol Phys 281: 187–222, DOI: 10.1007/s11207-012-9988-6
  • Pesnell WD, Thompson BJ, Chamberlin PC. 2012. The Solar Dynamics Observatory (SDO). Sol Phys 275: 3–15, DOI: 10.1007/s11207-011-9841-3 [NASA ADS] [CrossRef]
  • Reames Donald V. 1999. Particle acceleration at the Sun and in the heliosphere. Space Sci Rev 90: 413–491, DOI: 10.1023/A:1005105831781 [NASA ADS] [CrossRef]
  • Richardson IG, von Rosenvinge TT, Cane HV, et al. 2014. >25 MeV Proton events observed by the high energy telescopes on the STEREO A and B spacecraft and/or at Earth during the first seven years of the STEREO mission. Sol Phys 289: 3059–3107, DOI: 10.1007/s11207-014-0524-8 [NASA ADS] [CrossRef]
  • Rouillard AP, Sheeley NR, Tylka A, et al. 2012. The longitudinal properties of a solar energetic particle event investigated using modern solar imaging. ApJ 752: 44, DOI: 10.1088/0004-637X/752/1/44 [NASA ADS] [CrossRef]
  • Rouillard AP, Plotnikov I, Pinto RF, et al. 2016. Deriving the properties of coronal pressure fronts in 3D: application to the 2012 May 17 ground level enhancement. ApJ 833: 45, DOI: 10.3847/1538-4357/833/1/45 [NASA ADS] [CrossRef]
  • Saito K, Poland AI, Munro RH. 1977. A study of the background corona near solar minimum. Sol Phys 55: 121–134, DOI: 10.1007/BF00150879 [NASA ADS] [CrossRef]
  • Salas-Matamoros C, Klein K-L, Rouillard AP. 2016. Coronal mass ejection-related particle acceleration regions during a simple eruptive event. A&A 590: A135, DOI: 10.1051/0004-6361/201528015 [NASA ADS] [CrossRef] [EDP Sciences]
  • Sheeley NR, Wang Y-M, Hawley SH, et al. 1997. Measurements of flow speeds in the corona between 2 and 30. ApJ 484: 472–478, DOI: 10.1086/304338 [NASA ADS] [CrossRef]
  • Sheeley NR, Hakala WN, Wang Y-M. 2000. Detection of coronal mass ejection associated shock waves in the outer corona. J Geophys Res 105: 5081–5092, DOI: 10.1029/1999JA000338 [NASA ADS] [CrossRef]
  • Thernisien AFR, Howard RA, Vourlidas A. 2006. Modeling of flux rope coronal mass ejections. ApJ 652: 763–773, DOI: 10.1086/508254 [NASA ADS] [CrossRef]
  • Thompson WT, Wei K, Burkepile JT, Davila JM, St. Cyr OC. 2010. Background subtraction for the SECCHI/COR1 telescope aboard STEREO. SoPh 262: 213–231, DOI: 10.1007/s11207-010-9513-8
  • Treumann RA. 2009. Fundamentals of collisionless shocks for astrophysical application, 1. Non-relativistic shocks. Astron Astrophys Rev 17: 409–535, DOI: 10.1007/s00159-009-0024-2 [CrossRef]
  • Tylka AJ, Cohen CMS, Dietrich WF, et al. 2005. Shock geometry, seed populations, and the origin of variable elemental composition at high energies in large gradual solar particle events. ApJ 625: 474–495, DOI: 10.1086/429384 [NASA ADS] [CrossRef]
  • Van de Hulst HC. 1950. The electron density of the solar corona. Bull Astron Inst Neth 11: 135
  • Van Doorsselaere T, Wardle N, Del Zanna G, et al. 2011. The first measurement of the adiabatic index in the solar corona using time-dependent spectroscopy of hinode/eis observations. ApJL 727: L32, DOI: 10.1088/2041-8205/727/2/L32 [NASA ADS] [CrossRef]
  • Vourlidas A, Bemporad A. 2012. A decade of coronagraphic and spectroscopic studies of CME-driven shocks. In: AIP Conference Proceedings, vol. 1436, AIP Publishing, 279, DOI: 10.1063/1.4723620 [CrossRef]
  • Vourlidas A, Howard RA, Plunkett SP, et al. 2016. The Wide-Field Imager for Solar Probe Plus (WISPR). Space Sci Rev 204: 83–130, DOI: 10.1007/s11214-014-0114-y [CrossRef]
  • Warmuth A. 2015. Large-scale globally propagating coronal waves. Living Rev Sol Phys 12: 3, DOI: 10.1007/lrsp-2015-3 [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.