Open Access
Issue |
J. Space Weather Space Clim.
Volume 8, 2018
Flares, coronal mass ejections and solar energetic particles and their space weather impacts
|
|
---|---|---|
Article Number | A17 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/swsc/2018005 | |
Published online | 26 March 2018 |
- Akioka M, Nagatsuma T, Miyake W, Ohtaka K, Marubashi K. 2005. The L5 mission for space weather forecasting. Adv Space Res 35: 65–69. Mars International Reference Atmosphere, Living With a Star and Fundamental Physics. DOI:10.1016/j.asr.2004.09.014. [CrossRef] [Google Scholar]
- Arge CN, Pizzo VJ. 2000. Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J Geophys Res 105: 10465–10480. DOI:10.1029/1999JA000262. [CrossRef] [Google Scholar]
- Arge CN, Luhmann JG, Odstrčil D, Schrijver CJ, Li Y. 2004. Stream structure and coronal sources of the solar wind during the May 12th, 1997 CME. J Atmos Sol-Terr Phys 66: 1295–1309. DOI:10.1016/j.jastp.2004.03.018. [Google Scholar]
- Bartels J, Heck NH, Johnston HF. 1939. The three-hour-range index measuring geomagnetic activity. Terr Magn Atmos Electr (J Geophys Res) 44: 411. DOI:10.1029/TE044i004p00411. [NASA ADS] [CrossRef] [Google Scholar]
- Colaninno RC, Vourlidas A, Wu CC. 2013. Quantitative comparison of methods for predicting the arrival of coronal mass ejections at Earth based on multiview imaging. J Geophys Res (Space Phys) 118: 6866–6879. DOI:10.1002/2013JA019205. [Google Scholar]
- Domingo V, Fleck B, Poland AI. 1995. The SOHO mission: an overview. Sol Phys 162: 1–37. [Google Scholar]
- Emmons D, Acebal A, Pulkkinen A, Taktakishvili A, MacNeice P, Odstrčil D. 2013. Ensemble forecasting of coronal mass ejections using the WSA−ENLIL with CONED Model. Space Weather 11: 95–106. DOI:10.1002/swe.20019. [CrossRef] [Google Scholar]
- Gopalswamy N, Davila J, Cyr OS, Sittler E, Auchère F, et al. 2011. Earth-Affecting Solar Causes Observatory (EASCO): a potential international living with a star Mission from Sun-Earth L5. J Atmos Sol-Terr Phys 73: 658–663. DOI:10.1016/j.jastp.2011.01.013. [CrossRef] [Google Scholar]
- Jian L, Russell CT, Luhmann JG, Skoug RM. 2006. Properties of interplanetary coronal mass ejections at one AU during 1995–2004. Sol Phys 239: 393–436. DOI:10.1007/s11207-006-0133-2. [Google Scholar]
- Jian LK, Russell CT, Luhmann JG, Galvin AB, Simunac KDC. 2013. Solar wind observations at STEREO: 2007–2011. Sol Wind 13 1539: 191–194. DOI:10.1063/1.4811020. [Google Scholar]
- Jian LK, Russell CT, Luhmann JG, MacNeice PJ, Odstrčil D, Riley P, Linker JA, Skoug RM, Steinberg JT. 2011. Comparison of observations at ACE and Ulysses with Enlil model results: stream interaction regions during Carrington rotations 2016–2018. Sol Phys 273: 179–203. DOI:10.1007/s11207-011-9858-7. [CrossRef] [Google Scholar]
- Jolliffe I, Stephenson D, 2011, Forecast verification: a practioner’s guide in atmospheric science, 2nd edn, Wiley, New Jersey, USA. [CrossRef] [Google Scholar]
- Kaiser ML, Kucera TA, Davila JM, Cyr OC St, Guhathakurta M, Christian E. 2008. The STEREO mission: an introduction. Space Sci Rev 136: 5–16. DOI:10.1007/s11214-007-9277-0. [CrossRef] [Google Scholar]
- Lavraud B, Liu Y, Segura K, He J, Qin G, et al. 2016. A small mission concept to the Sun-Earth Lagrangian L5 point for innovative solar, heliospheric and space weather science. J Atmos Sol-Terr Phys 146(Supplement C): 171–185. DOI:10.1016/j.jastp.2016.06.004. [CrossRef] [Google Scholar]
- Lee CO, Arge CN, Odstrčil D, Millward G, Pizzo V, Quinn JM, Henney CJ. 2013. Ensemble modeling of CME propagation. Sol Phys 285: 349–368. DOI:10.1007/s11207-012-9980-1. [NASA ADS] [CrossRef] [Google Scholar]
- Mays ML, Taktakishvili A, Pulkkinen A, MacNeice PJ, Rastätter L, et al. 2015a. Ensemble modeling of CMEs using the WSA-ENLIL+Cone model. Sol Phys 290: 1775–1814. DOI:10.1007/s11207-015-0692-1. [CrossRef] [Google Scholar]
- Mays ML, Thompson BJ, Jian LK, Colaninno RC, Odstrčil D, et al. 2015b. Propagation of the 7 January 2014 CME and resulting geomagnetic non-event. Astrophys J 812: 145. DOI:10.1088/0004-637X/812/2/145. [NASA ADS] [CrossRef] [Google Scholar]
- Menvielle M, Berthelier A. 1991. The K-derived planetary indices − description and availability. Rev Geophys 29: 415–432. DOI:10.1029/91RG00994. [CrossRef] [Google Scholar]
- Millward G, Biesecker D, Pizzo V, Koning CA. 2013. An operational software tool for the analysis of coronagraph images: determining CME parameters for input into the WSA-Enlil heliospheric model. Space Weather 11: 57–68. DOI:10.1002/swe.20024. [CrossRef] [Google Scholar]
- Möstl C, Amla K, Hall JR, Liewer PC, De Jong EM, et al. 2014. Connecting speeds, directions and arrival times of 22 coronal mass ejections from the Sun to 1 AU. Astrophys J 787: 119. DOI:10.1088/0004-637X/787/2/119. [CrossRef] [Google Scholar]
- Möstl C, Rollett T, Frahm R, Liu Y, Long D, et al. 2015. Strong coronal channeling and interplanetary evolution of a solar storm up to Earth and Mars. Nat Commun 6: 7135. DOI:10.1038/ncomms8135. [CrossRef] [Google Scholar]
- Newell PT, Sotirelis T, Liou K, Meng C-I, Rich FJ. 2007. A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables. J Geophys Res 112: A01206. DOI:10.1029/2006JA012015. [Google Scholar]
- Nieves-Chinchilla T. Linton MG, Hidalgo MA, Vourlidas A, Savani NP, Szabo A, Farrugia C, Yu W. 2016. A circular-cylindrical flux-rope analytical model for magnetic clouds. Astrophys J 823: 27. DOI:10.3847/0004-637X/823/1/27. [CrossRef] [Google Scholar]
- Odstrčil D. 2003. Modeling 3-D solar wind structure. Adv Space Res 32: 497–506. DOI:10.1016/S0273-1177(03)00332-6. [NASA ADS] [CrossRef] [Google Scholar]
- Odstrčil D, Pizzo VJ. 1999a. Three-dimensional propagation of CMEs in a structured solar wind flow: 1. CME launched within the streamer belt. J Geophys Res 104: 483–492. DOI:10.1029/1998JA900019. [CrossRef] [Google Scholar]
- Odstrčil D, Pizzo VJ. 1999b Three-dimensional propagation of coronal mass ejections in a structured solar wind flow 2. CME launched adjacent to the streamer belt. J Geophys Res 104: 493–504. DOI:10.1029/1998JA900038. [Google Scholar]
- Odstrčil D, Smith Z, Dryer M. 1996. Distortion of the heliospheric plasma sheet by interplanetary shocks. Geophys Res Lett 23: 2521–2524. DOI:10.1029/96GL00159. [CrossRef] [Google Scholar]
- Odstrčil D, Riley P, Zhao XP. 2004. Numerical simulation of the 12 May 1997 interplanetary CME event. J Geophys Res (Space Phys) 109: A02116. DOI:10.1029/2003JA010135. [Google Scholar]
- Richardson IG, Cane HV. 2010. Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996–2009): catalog and summary of properties. Sol Phys 264: 189–237. DOI:10.1007/s11207-010-9568-6. [CrossRef] [Google Scholar]
- Rostoker G. 1972. Geomagnetic indices. Rev Geophys Space Phys 10: 935–950. DOI:10.1029/RG010i004p00935. [CrossRef] [Google Scholar]
- Simunac KDC, Kistler LM, Galvin AB, Popecki MA, Farrugia CJ. 2009. In situ observations from STEREO/PLASTIC: a test for L5 space weather monitors. Ann Geophys 27: 3805–3809. DOI:10.5194/angeo-27-3805-2009. https://www.ann-geophys.net/27/3805/2009/ [CrossRef] [Google Scholar]
- Strugarek A, Janitzek N, Lee A, Löschl P, Seifert B, et al. 2015. A space weather mission concept: Observatories of the Solar Corona and Active Regions (OSCAR). J Space Weather Space Clim 5: A4. DOI:10.1051/swsc/2015003. [CrossRef] [Google Scholar]
- Taktakishvili A, Kuznetsova M, MacNeice P, Hesse M, Rastätter L, Pulkkinen A, Chulaki A, Odstrčil D. 2009. Validation of the coronal mass ejection predictions at the Earth orbit estimated by ENLIL heliosphere cone model. Space Weather 7: S03004. DOI:10.1029/2008SW000448. [CrossRef] [Google Scholar]
- Temmer M, Reiss MA, Nikolic L, Hofmeister SJ, Veronig AM. 2017. Preconditioning of interplanetary space due to transient CME disturbances. Astrophys J 835: 141. http://stacks.iop.org/0004-637X/835/i=2/a=141. [NASA ADS] [CrossRef] [Google Scholar]
- Vourlidas A. 2015. Mission to the Sun-Earth L5 Lagrangian point: an optimal platform for space weather research. Space Weather 13: 197–201. DOI:10.1002/2015SW001173. [CrossRef] [Google Scholar]
- Vršnak B, Temmer M, Žic T, Taktakishvili A, Dumbović M, Möstl C, Veronig AM, Mays ML, Odstrčil D. 2014. Heliospheric propagation of coronal mass ejections: comparison of numerical WSA-ENLIL+Cone model and analytical drag-based model. Astrophys J Suppl Ser 213: 21. DOI:10.1088/0067-0049/213/2/21. [CrossRef] [Google Scholar]
- Weinzierl M, Mackay DH, Yeates AR, Pevtsov AA. 2016. The possible impact of L5 magnetograms on non-potential solar coronal magnetic field simulations. Astrophys J 828: 102. DOI:10.3847/0004-637X/828/2/102. [Google Scholar]
- Wilks D, 2011, Statistical methods in atmospheric sciences: an introduction, Academic Press, Massachusetts, USA. [Google Scholar]
- Winslow RM. 2015. Interplanetary coronal mass ejections from MESSENGER orbital observations at Mercury. J Geophys Res 120: 6101–6118. DOI:10.1002/2015JA021200. [Google Scholar]
- Xie H, Ofman L, Lawrence G. 2004. Cone model for halo CMEs: application to space weather forecasting. J Geophys Res (Space Phys) 109: A03109. DOI:10.1029/2003JA010226. [Google Scholar]
- Zhao XP, Plunkett SP, Liu W. 2002. Determination of geometrical and kinematical properties of halo coronal mass ejections using the cone model. J Geophys Res (Space Phys) 107: 1223. DOI:10.1029/2001JA009143. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.