Open Access
Issue |
J. Space Weather Space Clim.
Volume 8, 2018
Developing New Space Weather Tools: Transitioning fundamental science to operational prediction systems
|
|
---|---|---|
Article Number | A18 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/swsc/2018007 | |
Published online | 28 March 2018 |
- Cranmer SR. 2009. Coronal Holes. Living Rev Sol Phys 6: 3. DOI:10.12942/lrsp-2009-3. [NASA ADS] [CrossRef] [Google Scholar]
- Cranmer SR, Gibson SE, Riley P. 2017. Origins of the Ambient Solar Wind: Implications for Space Weather. Space Sci Rev 212: 1345–1384. DOI:10.1007/s11214-017-0416-y. [Google Scholar]
- Delaboudinière J-P, Artzner GE, Brunaud J, Gabriel AH, Hochedez JF, et al. 1995. EIT: Extreme-Ultraviolet Imaging Telescope for the SOHO Mission. Sol Phys 162: 291–312. DOI:10.1007/BF00733432. [Google Scholar]
- D'Huys E, Seaton DB, Poedts S, Berghmans D. 2014. Observational Characteristics of Coronal Mass Ejections without Low-coronal Signatures. Astrophys J 795: 49. DOI:10.1088/0004-637X/795/1/49. [NASA ADS] [CrossRef] [Google Scholar]
- Galvin AB, Kistler LM, Popecki MA, Farrugia CJ, Simunac KDC, et al. 2008. The Plasma and Suprathermal Ion Composition (PLASTIC) Investigation on the STEREO Observatories. Space Sci Rev 136: 437–486. DOI:10.1007/s11214-007-9296-x. [CrossRef] [Google Scholar]
- Gómez-Herrero R, Malandraki O, Dresing N, Kilpua E, Heber B, Klassen A, Müller-Mellin R, Wimmer-Schweingruber RF. 2011. Spatial and temporal variations of CIRs: Multi-point observations by STEREO. J Atmos Sol Terr Phys 73: 551–565. DOI:10.1016/j.jastp.2010.11.017. [Google Scholar]
- Gressl C, Veronig AM, Temmer M, Odstrčil D, Linker JA, Mikić Z, Riley P. 2014. Comparative Study of MHD Modeling of the Background Solar Wind. Sol Phys 289: 1783–1801. DOI:10.1007/s11207-013-0421-6. [NASA ADS] [CrossRef] [Google Scholar]
- Jian L, Russell CT, Luhmann JG, Skoug RM. 2006. Properties of Interplanetary Coronal Mass Ejections at One AU During 1995–2004. Sol Phys 239: 393–436. DOI:10.1007/s11207-006-0133-2. [Google Scholar]
- Jian LK, MacNeice PJ, Taktakishvili A, Odstrčil D, Jackson B, Yu H-S, Riley P, Sokolov IV, Evans RM. 2015. Validation for solar wind prediction at Earth: Comparison of coronal and heliospheric models installed at the CCMC. Space Weather 13: 316–338. DOI:10.1002/2015SW001174. [CrossRef] [Google Scholar]
- Lee CO, Luhmann JG, Odstrcil D, MacNeice PJ, de Pater I, Riley P, Arge CN. 2009. The Solar Wind at 1 AU During the Declining Phase of Solar Cycle 23: Comparison of 3D Numerical Model Results with Observations. Sol Phys 254: 155–183. DOI:10.1007/s11207-008-9280-y. [NASA ADS] [CrossRef] [Google Scholar]
- Lemen JR, Title AM, Akin DJ, Boerner PF, Chou C, et al. 2012. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Sol Phys 275: 17–40. DOI:10.1007/s11207-011-9776-8. [Google Scholar]
- Li X. 2004. Variations of 0.7–6.0 MeV electrons at geosynchronous orbit as a function of solar wind. Space Weather 2: S03006. DOI:10.1029/2003SW000017. [Google Scholar]
- Luhmann JG, Lee CO, Li Y, Arge CN, Galvin AB, Simunac K, Russell CT, Howard RA, Petrie G. 2009. Solar Wind Sources in the Late Declining Phase of Cycle 23: Effects of the Weak Solar Polar Field on High Speed Streams. Sol Phys 256: 285–305. DOI:10.1007/s11207-009-9354-5. [Google Scholar]
- McComas DJ, Bame SJ, Barker P, Feldman WC, Phillips JL, Riley P, Griffee JW. 1998. Solar Wind Electron Proton Alpha Monitor (SWEPAM) for the Advanced Composition Explorer. Space Sci Rev 86: 563–612. DOI:10.1023/A:1005040232597. [Google Scholar]
- Miyake W. 2012. On the Predictive Ability of Geomagnetic Disturbances from Solar Wind Measurements at Separated Solar Longitude. Int J Astron Astrophys 2: 63–73. DOI:10.4236/ijaa.2012.22009. [CrossRef] [Google Scholar]
- Nolte JT, Krieger AS, Timothy AF, Gold RE, Roelof EC, Vaiana G, Lazarus AJ, Sullivan JD, McIntosh PS. 1976. Coronal holes as sources of solar wind. Sol Phys 46: 303–322. DOI:10.1007/BF00149859. [CrossRef] [Google Scholar]
- Opitz A, Karrer R, Wurz P, Galvin AB, Bochsler P, et al. 2009. Temporal Evolution of the Solar Wind Bulk Velocity at Solar Minimum by Correlating the STEREO A and B Plastic Measurements. Sol Phys 256: 365–377. DOI:10.1007/s11207-008-9304-7. [Google Scholar]
- Owens MJ, Challen R, Methven J, Henley E, Jackson DR. 2013. A 27 day persistence model of near-Earth solar wind conditions: A long lead-time forecast and a benchmark for dynamical models. Space Weather 11: 225–236. DOI:10.1002/swe.20040. [CrossRef] [Google Scholar]
- Petrie GJD, Haislmaier KJ. 2013. Low-latitude Coronal Holes, Decaying Active Regions, and Global Coronal Magnetic Structure. Astrophys J 775: 100. DOI:10.1088/0004-637X/775/2/100. [CrossRef] [Google Scholar]
- Reiss MA, Temmer M, Veronig AM, Nikolic L, Vennerstrom S, Schöngassner F, Hofmeister SJ. 2016. Verification of high-speed solar wind stream forecasts using operational solar wind models. Space Weather 14: 495–510. DOI:10.1002/2016SW001390. [CrossRef] [Google Scholar]
- Richardson IG, Cane HV. 2010. Near-Earth Interplanetary Coronal Mass Ejections During Solar Cycle 23 (1996–2009): Catalog and Summary of Properties. Sol Phys 264: 189–237. DOI:10.1007/s11207-010-9568-6. [CrossRef] [Google Scholar]
- Rotter T, Veronig AM, Temmer M, Vršnak B. 2012. Relation Between Coronal Hole Areas on the Sun and the Solar Wind Parameters at 1 AU. Sol Phys 281: 793–813. DOI:10.1007/s11207-012-0101-y. [CrossRef] [Google Scholar]
- Rotter T, Veronig AM, Temmer M, Vršnak B. 2015. Real-Time Solar Wind Prediction Based on SDO/AIA Coronal Hole Data. Sol Phys 290: 1355–1370. DOI:10.1007/s11207-015-0680-5. [CrossRef] [Google Scholar]
- Temmer M, Reiss MA, Nikolic L, Hofmeister SJ, Veronig AM. 2017. Preconditioning of Interplanetary Space Due to Transient CME Disturbances. Astrophys J 835: 141. DOI:10.3847/1538-4357/835/2/141. [NASA ADS] [CrossRef] [Google Scholar]
- Turner DL, Li X. 2011. Using spacecraft measurements ahead of Earth in the Parker spiral to improve terrestrial space weather forecasts. Space Weather 9: S01002. DOI:10.1029/2010SW000627. [Google Scholar]
- Vršnak B, Temmer M, Veronig AM. 2007. Coronal Holes and Solar Wind High-Speed Streams: I. Forecasting the Solar Wind Parameters. Sol Phys 240: 315–330. DOI:10.1007/s11207-007-0285-8. [Google Scholar]
- Wang Y-M, Sheeley Jr. NR. 1990. Magnetic flux transport and the sunspot-cycle evolution of coronal holes and their wind streams. Astrophys J 365: 372–386. DOI:10.1086/169492. [NASA ADS] [CrossRef] [Google Scholar]
- Wuelser J-P, Lemen JR, Tarbell TD, Wolfson CJ, Cannon JC, et al. 2004. EUVI: the STEREO-SECCHI extreme ultraviolet imager. In S. Fineschi and MA. Gummin, eds., Telescopes and Instrumentation for Solar Astrophysics, vol. 5171 of proc. SPIE, 111–122. DOI:10.1117/12.506877. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.