J. Space Weather Space Clim.
Volume 8, 2018
Developing New Space Weather Tools: Transitioning fundamental science to operational prediction systems
Article Number A02
Number of page(s) 12
Published online 26 January 2018
  • Altschuler MD, Trotter DE, Orrall FQ. 1972. Coronal holes. Sol Phys 26: 354–365, DOI:10.1007/BF00165276. [NASA ADS] [CrossRef]
  • Antonucci E, Dodero MA, Giordano S, Krishnakumar V, Noci G. 2004. Spectroscopic measurement of the plasma electron density and outflow velocity in a polar coronal hole. A&A 416: 749–758, DOI:10.1051/0004-6361:20031650. [NASA ADS] [CrossRef] [EDP Sciences]
  • Blake SP, Gallagher PT, McCauley J, Jones AG, Hogg C, Campanyà J, Beggan CD, Thomson AWP, Kelly GS, Bell D. 2016. Geomagnetically induced currents in the Irish power network during geomagnetic storms. Space Weather 14: 1136–1154, DOI:10.1002/2016SW001534. [CrossRef]
  • Boteler DH. 2001. Space weather effects on power systems. Wash DC Am Geophys Union Geophys Monogr Ser 125: 347–352, DOI:10.1029/GM125p0347.
  • Boucheron LE, Valluri M, McAteer RTJ. 2016. Segmentation of coronal holes using active contours without edges. Sol Phys 291: 2353–2372, DOI:10.1007/s11207-016-0985-z. [CrossRef]
  • Cranmer SR. 2002. Coronal holes and the high-speed solar wind. Space Sci Rev 101: 229–294, DOI:10.1023/A:1020840004535. [NASA ADS] [CrossRef]
  • Cranmer SR. 2009. Coronal holes. Living Rev Sol Phys 6: DOI:10.12942/lrsp-2009-3. [NASA ADS] [CrossRef]
  • Freeland SL, Handy BN. 1998. Data analysis with the solarsoft system. Sol Phys 182: 497–500, DOI:10.1023/A:1005038224881. [NASA ADS] [CrossRef]
  • Fujiki K, Hirano M, Kojima M, Tokumaru M, Baba D, Yamashita M, Hakamada K. 2005. Relation between solar wind velocity and properties of its source region. Adv Space Res 35: 2185–2188, DOI:10.1016/j.asr.2005.05.057. [NASA ADS] [CrossRef]
  • Harvey KL, Recely F. 2002. Polar coronal holes during cycles 22 and 23. Sol Phys 211: 31–52, DOI:10.1023/A:1022469023581. [NASA ADS] [CrossRef]
  • Henney CJ, Harvey JW. 2005. Automated coronal hole detection using He 1083 nm spectroheliograms and photospheric magnetograms. In K. Sankarasubramanian, M. Penn, and A. Pevtsov, eds., Large-scale Structures and their Role in Solar Activity, vol. 346, Astronomical Society of the Pacific Conference Series, 261 p.
  • Huttunen KEJ, Kilpua SP, Pulkkinen A, Viljanen A, Tanskanen E. 2008. Solar wind drivers of large geomagnetically induced currents during the solar cycle 23. Space Weather 6: S10002, DOI:10.1029/2007SW000374.
  • Krieger AS, Timothy AF, Roelof EC. 1973. A Coronal hole and its identification as the source of a high velocity solar wind stream. Sol Phys 29: 505–525, DOI:10.1007/BF00150828. [NASA ADS] [CrossRef]
  • Krista LD, Gallagher PT. 2009. Automated coronal hole detection using local intensity thresholding techniques. Sol Phys 256: 87–100, DOI:10.1007/s11207-009-9357-2. [NASA ADS] [CrossRef]
  • Lemen JR, Title AM, Akin DJ, Boerner PF, Chou C, et al. 2012. The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Sol Phys 275: 17–40, DOI:10.1007/s11207-011-9776-8. [NASA ADS] [CrossRef]
  • Marshall RA, Dalzell M, Waters CL, Goldthorpe P, Smith EA. 2012. Geomagnetically induced currents in the New Zealand power network. Space Weather 10: S08, DOI:10.1029/2012SW000806. [CrossRef]
  • Michelson AA. 1927. Studies in optics, The University of Chicago Press, Chicago, Ill.
  • Nolte JT, Krieger AS, Timothy AF, Gold RE, Roelof EC, Vaiana G, Lazarus AJ, Sullivan JD, McIntosh PS. 1976. Coronal holes as sources of solar wind. Sol Phys 46: 303–322, DOI:10.1007/BF00149859. [NASA ADS] [CrossRef]
  • Pesnell WD, Thompson BJ, Chamberlin PC. 2012. The solar dynamics observatory (SDO). Sol Phys 275: 3–15, DOI:10.1007/s11207-011-9841-3. [NASA ADS] [CrossRef]
  • Phillips K. 1995. Guide to the Sun, Cambridge University Press.
  • Reiss MA, Hofmeister SJ, De Visscher R, Temmer M, Veronig AM, Delouille V, Mampaey B, Ahammer H. 2015. Improvements on coronal hole detection in SDO/AIA images using supervised classification. J Space Weather Space Clim 5: A23, DOI:10.1051/swsc/2015025. [CrossRef]
  • Scherrer PH, Schou J, Bush RI, Kosovichev AG, Bogart RS, et al. 2012. The helioseismic and magnetic imager (HMI) investigation for the solar dynamics observatory (SDO). Sol Phys 275: 207–227, DOI:10.1007/s11207-011-9834-2. [NASA ADS] [CrossRef]
  • Scholl IF, Habbal SR. 2008. Automatic detection and classification of coronal holes and filaments based on EUV and magnetogram observations of the solar disk. Sol Phys 248: 425–439, DOI:10.1007/s11207-007-9075-6. [CrossRef]
  • Schou J, Scherrer PH, Bush RI, Wachter R, Couvidat S, et al. 2012. Design and ground calibration of the helioseismic and magnetic imager (HMI) instrument on the solar dynamics observatory (SDO). Sol Phys 275: 229–259, DOI:10.1007/s11207-011-9842-2. [NASA ADS] [CrossRef]
  • Tsurutani BT, Gonzalez WD, Gonzalez ALC, Guarnieri FL, Gopalswamy N, et al. 2006. Corotating solar wind streams and recurrent geomagnetic activity: a review. J Geophys Res: Space Phys 111: A07S01, DOI:10.1029/2005JA011273.
  • Verbeeck C, Delouille V, Mampaey B, De Visscher R. 2014. The SPoCA-suite: software for extraction, characterization, and tracking of active regions and coronal holes on EUV images. A&A 561: A29, DOI:10.1051/0004-6361/201321243. [NASA ADS] [CrossRef] [EDP Sciences]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.