Open Access
Issue |
J. Space Weather Space Clim.
Volume 8, 2018
Developing New Space Weather Tools: Transitioning fundamental science to operational prediction systems
|
|
---|---|---|
Article Number | A28 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/swsc/2018015 | |
Published online | 01 May 2018 |
- Alves MV, Echer E, Gonzalez WD. 2006. Geoeffectiveness of corotating interaction regions as measured by Dst index. J Geophys Res (Space Phys) 111: A07S05. DOI:10.1029/2005JA011379. [Google Scholar]
- Arge CN, Pizzo VJ. 2000. Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J Geophys Res (Space Phys) 105: 10465–10480. DOI:10.1029/1999JA000262. [CrossRef] [Google Scholar]
- Behannon KW, Hewish A, Burlaga LF. 1991. Structure and evolution of compound streams at not greater than 1 AU. J Geophys Res 96: 21. DOI:10.1029/91JA02267. [NASA ADS] [CrossRef] [Google Scholar]
- Borovsky JE, Denton MH. 2010. Solar wind turbulence and shear: a superposed-epoch analysis of corotating interaction regions at 1 AU. J Geophys Res (Space Phys) 115: A10101. DOI:10.1029/2009JA014966. [Google Scholar]
- Brueckner GE, Howard RA, Koomen MJ, Korendyke CM, Michels DJ, et al. 1995. The large angle spectroscopic coronaXXX (LASCO). Sol Phys 162: 357–402. DOI:10.1007/BF00733434. [CrossRef] [Google Scholar]
- Burlaga LFE. 1991. Magnetic clouds 152. [Google Scholar]
- Burlaga LF, Plunkett SP, St Cyr OC. 2002. Successive CMEs and complex ejecta. J Geophys Res (Space Phys) 107: 1266. DOI:10.1029/2001JA000255. [Google Scholar]
- Burlaga L, Berdichevsky D, Gopalswamy N, Lepping R, Zurbuchen T. 2003. Merged interaction regions at 1 AU. J Geophys Res (Space Phys) 108: 1425. DOI:10.1029/2003JA010088. [NASA ADS] [CrossRef] [Google Scholar]
- Domingo V, Fleck B, Poland AI. 1995. The SOHO mission: an overview. Sol Phys 162: 1–37. DOI:10.1007/BF00733425. [Google Scholar]
- Echer E, Tsurutani BT, Gonzalez WD, Kozyra JU. 2011. High speed stream properties and related geomagnetic activity during the whole heliosphere interval (WHI): 20 March–16 April 2008. Sol Phys 274: 303–320. DOI:10.1007/s11207-011-9739-0. [CrossRef] [Google Scholar]
- Fenrich FR, Luhmann JG. 1998. Geomagnetic response to magnetic clouds of different polarity. Geophys Res Lett 25: 2999–3002. DOI:10.1029/98GL51180. [CrossRef] [Google Scholar]
- Gloeckler G, Balsiger H, Bürgi A, Bochsler P, Fisk LA, et al. 1995. The solar wind and suprathermal ion composition investigation on the WIND spacecraft. Space Sci Rev 71: 79–124. DOI:10.1007/BF00751327. [NASA ADS] [CrossRef] [Google Scholar]
- Gopalswamy N, Yashiro S, Krucker S, Stenborg G, Howard RA. 2004. Intensity variation of large solar energetic particle events associated with coronal mass ejections. J Geophys Res (Space Phys) 109: A12105. DOI:10.1029/2004JA010602. [Google Scholar]
- Gopalswamy N, Mäkelä P, Xie H, Akiyama S, Yashiro S. 2009. CME interactions with coronal holes and their interplanetary consequences. J Geophys Res (Space Phys) 114: A00A22. DOI:10.1029/2008JA013686. [Google Scholar]
- Harvey JW, Sheeley NR. 1978. Coronal holes, solar wind streams, and geomagnetic activity during the new sunspot cycle. Sol Phys 59: 159–173. DOI:10.1007/BF00154939. [CrossRef] [Google Scholar]
- Howard RA, Moses JD, Vourlidas A, Newmark JS, Socker DG, et al. 2008. Sun Earth connection coronal and heliospheric investigation (SECCHI). Space Sci Rev 136: 67–115. DOI:10.1007/s11214-008-9341-4. [Google Scholar]
- Hurlburt N, Cheung M, Schrijver C, Chang L, Freeland S, et al. 2012. Heliophysics event knowledgebase for the Solar Dynamics Observatory (SDO) and beyond. Sol Phys 275: 67–78. DOI:10.1007/s11207-010-9624-2. [Google Scholar]
- Jian LK, MacNeice PJ, Taktakishvili A, Odstrcil D, Jackson B, Yu H-S, Riley P, Sokolov IV, Evans RM. 2015. Validation for solar wind prediction at Earth: comparison of coronal and heliospheric models installed at the CCMC. Space Weather 13: 316–338. DOI: 10.1002/2015SW001174. [CrossRef] [Google Scholar]
- Kilpua, EKJ, Hietala H, Turner DL, Koskinen HEJ, Pulkkinen TI, Rodriguez JV, Reeves GD, Claudepierre SG, Spence HE. 2015. Unraveling the drivers of the storm time radiation belt response. Geophys Res Lett 42: 3076–3084. DOI:10.1002/2015GL063542. [CrossRef] [Google Scholar]
- Krista LD, Gallagher PT. 2009. automated coronal hole detection using local intensity thresholding techniques. Sol Phys 256: 87–100. DOI:10.1007/s11207-009-9357-2. [Google Scholar]
- Lemen JR, Title AM, Akin DJ, Boerner PF, Chou C, et al. 2012. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Sol Phys 275: 17–40. DOI:10.1007/s11207-011-9776-8. [Google Scholar]
- Lepping RP, Berdichevsky DB, Szabo A, Arqueros C, Lazarus AJ. 2003. Profile of an average magnetic cloud at 1 AU for the quiet solar phase: wind observations. Sol Phys 212: 425–444. DOI:10.1023/A:1022938903870. [Google Scholar]
- Mays ML, Taktakishvili A, Pulkkinen A, MacNeice PJ, Rastätter L, et al. 2015. Ensemble modeling of CMEs using the WSA-ENLIL+Cone model. Sol Phys 290: 1775–1814. DOI:10.1007/s11207-015-0692-1. [NASA ADS] [CrossRef] [Google Scholar]
- McComas DJ, Bame SJ, Barker P, Feldman WC, Phillips JL, Riley P, Griffee JW. 1998. Solar wind electron proton alpha monitor (SWEPAM) for the Advanced Composition Explorer. Space Sci Rev 86: 563–612. DOI:10.1023/A:1005040232597. [Google Scholar]
- Mishra W, Srivastava N, Chakrabarty D. 2015. Evolution and consequences of interacting CMEs of 9–10 November 2012 Using STEREO/SECCHI and In Situ observations. Sol Phys 290: 527–552. DOI:10.1007/s11207-014-0625-4. [CrossRef] [Google Scholar]
- Mitsakou E, Moussas X. 2014. Statistical study of ICMEs and their sheaths during solar cycle 23 (1996–2008). Sol Phys 289: 3137–3157. DOI:10.1007/s11207-014-0505-y. [NASA ADS] [CrossRef] [Google Scholar]
- Mohamed AA, Gopalswamy N, Yashiro S, Akiyama S, Mäkelä P, Xie H, Jung H. 2012. The relation between coronal holes and coronal mass ejections during the rise, maximum, and declining phases of solar cycle 23. J Geophys Res (Space Phys) 117: A01103. DOI:10.1029/2011JA016589. [Google Scholar]
- Möstl C, Rollett T, Frahm RA, Liu YD, Long DM, et al. 2015. Strong coronal channelling and interplanetary evolution of a solar storm up to Earth and Mars. Nat Commun 6: 7135. DOI:10.1038/ncomms8135. [CrossRef] [Google Scholar]
- Myagkova IN, Shugay YS, Veselovsky IS, Yakovchouk OS. 2013. Comparative analysis of recurrent high-speed solar wind streams influence on the radiation environment of near-earth space in April-July 20101. Sol Syst Res 47: 127–140. DOI:10.1134/S0038094613020068. [CrossRef] [Google Scholar]
- Nieves-Chinchilla T, Vourlidas A, Stenborg G, Savani NP, Koval A, Szabo A, Jian LK. 2013. Inner heliospheric evolution of a “Stealth” CME derived from multi-view imaging and multipoint in situ observations. I. Propagation to 1 AU. Astrophys J 779: 55. DOI:10.1088/0004-637X/779/1/55. [Google Scholar]
- Nolte JT, Krieger AS, Timothy AF, Gold RE, Roelof EC, Vaiana G, Lazarus AJ, Sullivan JD, McIntosh PS. 1976. Coronal holes as sources of solar wind. Sol Phys 46: 303–322. DOI:10.1007/BF00149859. [CrossRef] [Google Scholar]
- Odstrčil D, Pizzo VJ. 1999. Three-dimensional propagation of CMEs in a structured solar wind flow: 1. CME launched within the streamer belt. J Geophys Res 104: 483–492. DOI:10.1029/1998JA900019. [CrossRef] [Google Scholar]
- Pizzo V, Millward G, Parsons A, Biesecker D, Hill S, Odstrcil D. 2011. Wang-Sheeley-Arege-ENLIL cone model transitions to operations. Space Weather 9: S03004. DOI:10.1029/2011SW000663. [Google Scholar]
- Prise AJ, Harra LK, Matthews SA, Arridge CS, Achilleos N. 2015. Analysis of a coronal mass ejection and corotating interaction region as they travel from the Sun passing Venus, Earth, Mars, and Saturn. J Geophys Res (Space Phys) 120: 1566–1588. DOI:10.1002/2014JA020256. [CrossRef] [Google Scholar]
- Reiss MA, Temmer M, Veronig AM, Nikolic L, Vennerstrom S, Schöngassner F, Hofmeister SJ. 2016. Verification of high-speed solar wind stream forecasts using operational solar wind models. Space Weather 14: 495–510. DOI:10.1002/2016SW001390. [CrossRef] [Google Scholar]
- Rod'kin DG, Shugay YS, Slemzin VA, Veselovskii IS. 2016. The effect of solar activity on the evolution of solar wind parameters during the rise of the 24th cycle. Sol Syst Res 50: 44–55. DOI:10.1134/S0038094616010032. [CrossRef] [Google Scholar]
- Rotter T, Veronig AM, Temmer M, Vršnak B. 2015. Real-time solar wind prediction based on SDO/AIA coronal hole data. Sol Phys 290: 1355–1370. DOI:10.1007/s11207-015-0680-5. [CrossRef] [Google Scholar]
- Rouillard AP, Lavraud B, Sheeley NR, Davies JA, Burlaga LF, Savani NP, Jacquey C, Forsyth RJ. 2010. White light and in situ comparison of a forming merged interaction region. Astrophys J 719: 1385–1392. DOI: 10.1088/0004-637X/719/2/1385. [CrossRef] [Google Scholar]
- Scholl IF, Habbal SR. 2008. Automatic detection and classification of coronal holes and filaments based on EUV and magnetogram observations of the solar disk. Sol Phys 248: 425–439. DOI:10.1007/s11207-007-9075-6. [CrossRef] [Google Scholar]
- Sheeley NR Jr., Harvey JW. 1981. Coronal holes, solar wind streams, and geomagnetic disturbances during 1978 and 1979. Sol Phys 70: 237–249. DOI:10.1007/BF00151331. [NASA ADS] [CrossRef] [Google Scholar]
- Shugay YS, Veselovsky IS, Seaton DB, Berghmans D. 2011. Hierarchical approach to forecasting recurrent solar wind streams. Sol Syst Res 45: 546–556. DOI:10.1134/S0038094611060086. [Google Scholar]
- Shugay Y, Slemzin V, Veselovsky I. 2014. Magnetic field sector structure and origins of solar wind streams in 2012. J Space Weather Space Clim 4: A24. DOI:10.1051/swsc/2014021. [CrossRef] [Google Scholar]
- Shugay YS, Veselovsky D, Slemzin VA, Yermolaev YI, Rodkin DG. 2017. Possible causes of the discrepancy between the predicted and observed parameters of high-speed solar wind streams. Cosm Res 55: 20–29. DOI:10.1134/S0010952517010087. [CrossRef] [Google Scholar]
- Slemzin VA, Shugai YS. 2015. Identification of coronal sources of the solar wind from solar images in the EUV spectral range. Cosm Res 53: 47–58. DOI:10.1134/S0010952515010074. [CrossRef] [Google Scholar]
- Smith CW, L'Heureux J, Ness NF, Acuña MH, Burlaga LF, Scheifele J. 1998. The ACE magnetic fields experiment. Space Sci Rev 86: 613–632. DOI:10.1023/A:1005092216668. [CrossRef] [Google Scholar]
- Tsurutani BT, Echer E, Gonzalez WD. 2011. The solar and interplanetary causes of the recent minimum in geomagnetic activity (MGA23): a combination of midlatitude small coronal holes, low IMF BZ variances, low solar wind speeds and low solar magnetic fields. Ann Geophys 29: 839–849. DOI:10.5194/angeo-29-839-2011. [CrossRef] [Google Scholar]
- Temmer M, Vršnak B, Rollett T, Bein B, de Koning CA, et al. 2012. Characteristics of kinematics of a coronal mass ejection during the 2010 August 1 CME-CME interaction event. Astrophys J 749: 57. DOI:10.1088/0004-637X/749/1/57. [NASA ADS] [CrossRef] [Google Scholar]
- Temmer M, Reiss MA, Nikolic L, Hofmeister SJ, Veronig AM. 2017. Preconditioning of interplanetary space due to transient CME disturbances. Astrophys J 835: 141. DOI:10.3847/1538-4357/835/2/141. [NASA ADS] [CrossRef] [Google Scholar]
- Tsurutani BT, Gonzalez WD, Gonzalez ALC, Tang F, Arballo JK, Okada M. 1995. Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle. J Geophys Res 100: 21717–21734. DOI:10.1029/95JA01476. [NASA ADS] [CrossRef] [Google Scholar]
- Tsurutani BT, Gonzalez WD, Gonzalez ALC, Guarnieri FL, Gopalswamy N, et al. 2006. Corotating solar wind streams and recurrent geomagnetic activity: a review. J Geophys Res (Space Phys) 111: A07S01. DOI:10.1029/2005JA011273. [Google Scholar]
- Tsurutani BT, Echer E, Gonzalez WD. 2011a. The solar and interplanetary causes of the recent minimum in geomagnetic activity (MGA23): a combination of midlatitude small coronal holes, low IMF BZ variances, low solar wind speeds and low solar magnetic fields. Annales Geophysicae 29: 839–849. DOI:10.5194/angeo-29-839-2011. [Google Scholar]
- Tsurutani BT, Echer E, Guarnieri FL, Gonzalez WD. 2011b. The properties of two solar wind high speed streams and related geomagnetic activity during the declining phase of solar cycle 23. J Atmos Sol-Terr Phys 73: 164–177. DOI:10.1016/j.jastp.2010.04.003. [CrossRef] [Google Scholar]
- Vršnak B, Temmer M, Veronig AM. 2007. Coronal holes and solar wind high-speed streams: I. forecasting the solar wind parameters. Sol Phys 240: 315–330. DOI:10.1007/s11207-007-0285-8. [Google Scholar]
- Vršnak B, Žic T, Vrbanec D, Temmer M, Rollett T, et al. 2013. Propagation of interplanetary coronal mass ejections: the drag-based model. Sol Phys 285: 295–315. DOI:10.1007/s11207-012-0035-4. [NASA ADS] [CrossRef] [Google Scholar]
- Wang Y-M, Sheeley Jr NR. 1990. Solar wind speed and coronal flux-tube expansion. Astrophys J 355: 726–732. DOI:10.1086/168805. [NASA ADS] [CrossRef] [Google Scholar]
- Yermolaev YI, Yermolaev MY, Zastenker GN, Zelenyi LM, Petrukovich AA, Sauvaud J-A. 2005. Statistical studies of geomagnetic storm dependencies on solar and interplanetary events: a review. Planet Space Sci 53: 189–196. DOI:10.1016/j.pss.2004.09.044. [CrossRef] [Google Scholar]
- Yermolaev YI, Nikolaeva NS, Lodkina IG, Yermolaev MY. 2009. Catalog of large-scale solar wind phenomena during 1976–2000. Cosm Res 47: 81–94. DOI:10.1134/S0010952509020014. [Google Scholar]
- Yermolaev YI, Nikolaeva NS, Lodkina IG, Yermolaev MY. 2010. Specific interplanetary conditions for CIR-, Sheath-, and ICME-induced geomagnetic storms obtained by double superposed epoch analysis. Ann Geophys 28: 2177–2186. DOI:10.5194/angeo-28-2177-2010. [CrossRef] [Google Scholar]
- Yermolaev YI, Lodkina IG, Nikolaeva NS, Yermolaev MY. 2015. Dynamics of large-scale solar wind streams obtained by the double superposed epoch analysis. J Geophys Res (Space Phys) 120: 7094–7106. DOI:10.1002/2015JA021274. [Google Scholar]
- Yokoyama N, Kamide Y. 1997. Statistical nature of geomagnetic storms. J Geophys Res 102: 14215–14222. DOI:10.1029/97JA00903. [CrossRef] [Google Scholar]
- Zhao X, Dryer M. 2014. Current status of CME/shock arrival time prediction. Space Weather 12: 448–469. DOI: 10.1002/2014SW001060. [CrossRef] [Google Scholar]
- Zurbuchen TH, Richardson IG. 2006. In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci Rev 123: 31–43. DOI: 10.1007/s11214-006-9010-4. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.