Open Access
Issue
J. Space Weather Space Clim.
Volume 8, 2018
Article Number A27
Number of page(s) 22
DOI https://doi.org/10.1051/swsc/2018006
Published online 17 April 2018
  • Abdu MA, Batista IS, Bittencourt JA. 1981. Some characteristics of spread F at the magnetic equatorial station Fortaleza. J Geophys Res 86: 6836–6842. [CrossRef] [Google Scholar]
  • Abdu MA, Batista IS, Sobral JHA. 1992. A new aspect of magnetic declination control of equatorial spread F and F region dynamo. J Geophys Res 97: 14897–14904. [CrossRef] [Google Scholar]
  • Amabayo EB, McKinnel LA, Cilliers PJ. 2011. Statistical characterization of spread F over South Africa. Adv Spec Res 48: 2043–2052. [CrossRef] [Google Scholar]
  • Basu S, Basu S. 1976. Correlated measurements of scintillations and in situ F region irregularities from OGO-6. Geophys Res Lett 3: 681–684. [CrossRef] [Google Scholar]
  • Basu S, Whitney HE. 1983. The temporal structure of intensity scintillations near the magnetic equator. Radio Sci 18: 263–271. [CrossRef] [Google Scholar]
  • Basu S, Basu S. 1985. Equatorial scintillations: advances since ISEA-6. J Atmos Terr Phys 47: 753–768. [CrossRef] [Google Scholar]
  • Batista IS, Abdu MA, Bittencourt JA. 1986. Equatorial F region vertical plasma drifts: seasonal and longitudinal asymmetries in the American sector. J Geophys Res 91: 12055–12064. [CrossRef] [Google Scholar]
  • Behnke R. 1979. F layer height bands in the nocturnal ionosphere over Arecibo. J Geophys Res 84: 974–978. [CrossRef] [Google Scholar]
  • Beran L, Chmelar P, Rejfek L, Chum J, Mosna Z. 2015. Comparison of devices for monitoring of the ionosphere at the observatory Pruhonice. Microwave Techniques (COMITE), 2015 Conference on IEEE, pp. 1–4. [Google Scholar]
  • Bhaneja P, Earle GD, Bishop RL, Bullett TW, Mabie J, Redmon R. 2009. A statistical study of midlatitude spread F at Wallops Island, Virginia. J Geophys Res 114: A04301. DOI:10.1029/2008JA013212. [Google Scholar]
  • Booker HG, Wells HW. 1938. Scattering of radio waves by the F-region of the ionosphere. Terr Magn Atmos Electr 43: 249–256. [Google Scholar]
  • Bowman GG. 1960. Further studies of Spread-F at Brisbane-I experimental. Planet Space Sci :2 133–149. [CrossRef] [Google Scholar]
  • Bowman GG. 1984. A comparison of mid-latitude and equatorial-latitude spread-F characteristics. J Atmos Terr Phys 46: 65–71. [CrossRef] [Google Scholar]
  • Bowman GG. 1986. Some F2 layer-sporadic-E relationships. Ann Geophys 4: 55–60. [Google Scholar]
  • Bowman GG. 1988a. Large‐scale ionospheric structures associated with mid‐latitude spread F. J Geophys Res 93: 5955–5958. [CrossRef] [Google Scholar]
  • Bowman GG. 1988b. Small-scale stratifications associated with daytime travelling ionospheric disturbances in mid-latitude regions. Ann Geophys 6: 187–194. [Google Scholar]
  • Bowman GG. 1990. A review of some recent work on mid-latitude spread-F occurrence as detected by Ionosondes. J Geomagn Geoelectr 42: 109–138. [CrossRef] [Google Scholar]
  • Bowman GG. 1991. Ionospheric frequency spread and its relationship with range spread in mid-latitude regions. J Geophys Res 96: 9745–9753. [CrossRef] [Google Scholar]
  • Bowman GG. 1998. Short‐term delays (hours) of ionospheric spread F occurrence at a range of latitudes, following geomagnetic activity. J Geophys.Res 103: 11627–11634. [CrossRef] [Google Scholar]
  • Bowman GG. 2001. A comparison of nighttime TID characteristics between equatorial‐ionospheric‐anomaly crest and midlatitude regions, related to spread F occurrence. J Geophys Res 106: 1761–1769. [CrossRef] [Google Scholar]
  • Chandra H, Sharma S, Abdu MA, Batista IS. 2003. SpreadF at anomaly crest regions in the Indian and American longitudes. Adv Space Res 31: 717–727. DOI:10.1016/S0273-1177(03)00034-6. [CrossRef] [Google Scholar]
  • Chapagain NP, Fejer BG, Chau JL. 2009. Climatology of postsunset equatorial spread F over Jicamarca. J Geophys Res 114. DOI:10.1029/2008JA013911. [Google Scholar]
  • Chen WS, Lee CC, Chu FD, Su SY. 2011. Spread F, GPS phase fluctuations, and medium-scale traveling ionospheric disturbances over Wuhan during solar maximum. J Atmos Sol Terr Phys 73: 528–533. [CrossRef] [Google Scholar]
  • Cosgrove RB. 2007. Generation of mesoscale F layer structure and electric fields by the combined Perkins and E s layer instabilities, in simulations. Ann Geophys 25: 1579–1601. [CrossRef] [Google Scholar]
  • Cosgrove RB, Tsunoda RT. 2004. Instability of the E‐F coupled nighttime midlatitude ionosphere. J Geophys Res 109: A04305. DOI: 10.1029/2003JA010243. [Google Scholar]
  • Deminov MG, Deminov RG, Nepomnyashchaya EV. 2009. Seasonal features in the spread-F probability near midnight over Moscow. Geomagn Aeron 49: 630–636. [CrossRef] [Google Scholar]
  • Ding F, Wan W, Xu G, Yu T, Yang G, Wang J. 2011. Climatology of medium‐scale traveling ionospheric disturbances observed by a GPS network in central China. J Geophys Res 116: 19. DOI: 10.1029/2011JA016545. [CrossRef] [Google Scholar]
  • Earle GD, Musumba AM, McClure JP. 2006. A global study of nighttime midlatitude topside spread echoes. J Geophys Res 111: A11306. DOI:10.1029/2006JA011614. [CrossRef] [Google Scholar]
  • Earle GD, Musumba AM, Vadas SL. 2008. Satellite‐based measurements of gravity wave‐induced midlatitude plasma density perturbations. J Geophys Res 113: 6. DOI:10.1029/2007JA012766. [CrossRef] [Google Scholar]
  • Earle GD, Bhaneja P, Roddy PA, Swenson CM, Barjatya A, Bishop RL, Bullett TW, Crowley G, Redmon R, Groves K, Cosgrove R. 2010. A comprehensive rocket and radar study of midlatitude spread F. J Geophys Res 115: A12339. DOI:1029/2010JA015503. [CrossRef] [Google Scholar]
  • Evans JV, Holt JM, Wand RH. 1983. A differential-Doppler study of traveling ionospheric disturbances from Millstone Hill. Radio Sci 18: 435–451. [CrossRef] [Google Scholar]
  • Fejer BG, Kelley MC. 1980. Ionospheric irregularities. Rev Geophys 18: 401–454. [CrossRef] [Google Scholar]
  • Fukao S, Kelley MC, Shirakawa T, Takami T, Yamamoto M, Tsuda T, Kato S. 1991. Turbulent upwelling of the mid‐latitude ionosphere: 1. Observational results by the MU radar. J Geophys Res 96: 3725–3746. [CrossRef] [Google Scholar]
  • Haldoupis C, Kelley MC, Hussey GC, Shalimov S. 2003. Role of unstable sporadic‐E layers in the generation of midlatitude spread F. J Geophys Res 108: 2. DOI:10.1029/2003JA009956. [CrossRef] [Google Scholar]
  • Hajkowicz LA. 2007. Morphology of quantified ionospheric range spread-F over a wide range of midlatitudes in the Australian longitudinal sector. Ann Geophys 25: 1125–1130. [CrossRef] [Google Scholar]
  • Hajkowicz LA. 2016. Effect of auroral substorms on the ionospheric range spread-F enhancements at high southern midlatitudes using real time vertical-sounding ionograms. J Atmos Sol Terr Phys 140: 108–113. [CrossRef] [Google Scholar]
  • Hanson WB, Sanatani S. 1973. Large NI gradients below the equatorial F peak. J Geophys Res 78: 1167–1173. [CrossRef] [Google Scholar]
  • Herman JR. 1966. Spread F and ionospheric F‐region irregularities. Rev Geophys 4: 255–299. [CrossRef] [Google Scholar]
  • Hines CO. 1960. Internal atmospheric gravity waves at ionospheric heights. Can J Phys 38: 1441–1481. [CrossRef] [Google Scholar]
  • Hines CO. 1963. The upper atmosphere in motion. Q J Royal Meteorol Soc 89: 1–42. [CrossRef] [Google Scholar]
  • Huang CS, Miller CA, Kelley MC. 1994. Basic properties and gravity wave initiation of the midlatitude F region instability. Radio Sci 29: 395–405. DOI:10.1029/93RS01669. [CrossRef] [Google Scholar]
  • Huang CY, Marcos FA, Roddy PA, Hairston MR, Coley WR, Roth C, Bruinsma S, Hunton DE. 2009. Broad plasma decreases in the equatorial ionosphere. Geophys Res Lett 36. DOI:10.1029/2009GL039423. [CrossRef] [Google Scholar]
  • Huang WQ, Xiao Z, Xiao SG, Zhang DH, Hao YQ, Suo YC. 2011. Case study of apparent longitudinal differences of spread F occurrence for two midlatitude stations. Radio Sci 46. DOI:10.1029/2009RS004327. [Google Scholar]
  • Igarashi K, Kato H. 1993. Solar cycle variations and latitudinal dependence on the midlatitude spread F occurrence around Japan. Paper presented at the XXIV General Assembly. Kyoto, Japan: Int. Union of Radio Sci. [Google Scholar]
  • Jayachandran B, Balan N, Nampoothiri SP, Rao PB. 1987. HF Doppler observations of vertical plasma drifts in the evening F region at the equator. J Geophys Res 92: 11253–11256. [CrossRef] [Google Scholar]
  • Kelly MC. 1989. The Earth's ionosphere. Int Geophys Ser 43: 71. [Google Scholar]
  • Kelley MC, Fukao S. 1991. Turbulent upwelling of the midlatitude ionosphere 2. Theoretical framework. J Geophys Res 96: 3747–3753. [CrossRef] [Google Scholar]
  • Kelley MC, Haerendal G, Kappler H, Valenzuela A, Balsley BB, Carter DA, Ecklund WL, Carlson CW, Hausler B, Torbert R. 1976. Evidence for a Rayleigh-Taylor type instability and upwelling of depleted densityregions during equatorial spread F. Geophys Res Lett 3: 448–450. [CrossRef] [Google Scholar]
  • King GAM. 1970. Spread-F on ionograms. J Atmos Terr Phys 32: 209–212. [CrossRef] [Google Scholar]
  • Kotake N, Otsuka Y, Tsugawa T, Ogawa T, Saito A. 2006. Climatological study of GPS total electron content variations caused by medium‐scale traveling ionospheric disturbances. J Geophys Res 111. DOI:10.1029/2005JA011418. [Google Scholar]
  • Lambert S. 1988. Frequency and duration of disturbances in the mid‐latitude F region of the ionosphere. Radio Sci 23: 693–707. [CrossRef] [Google Scholar]
  • Lee CC, Chen WS. 2015. Effects of sporadic E-layer characteristics on spread-F generation in the nighttime ionosphere near a northern equatorial anomaly crest during solar minimum. J Atmos Sol Terr Phys 128: 33–39. [CrossRef] [Google Scholar]
  • Li G, Ning B, Abdu M, Yue X, Liu L, Wan W, Hu L. 2011. On the occurrence of postmidnight equatorial F region irregularities during the June solstice. J Geophys Res 116: A04318. DOI:10.1029/2010JA016056. [Google Scholar]
  • Liu L, Wan W, Ning B, Pirog OM, Kurkin VI. 2006. Solar activity variations of the ionospheric electron density. J Geophys Res 111: A08304. DOI: 10.1029/2006JA011598. [Google Scholar]
  • Lyon AJ, Skinner NJ, Wright RW. 1961. Equatorial spread-F at Ibadan, Nigeria. J Atmos Terr Phys 21: 101–119. [Google Scholar]
  • Mathews JD, Gonzalez S, Sulzer MP, Zhou Q‐H, Urbina J, Kudeki E, Franke S. 2001. Kilometer‐scale layered structures inside spread‐F. Geophys Res Lett 28: 4167–4170. [CrossRef] [Google Scholar]
  • McClure JP, Hanson WB, Hoffman JH. 1977. Plasma bubbles and irregularities in the equatorial ionosphere. J Geophys Res 82: 2650–2656. [CrossRef] [Google Scholar]
  • McNicol RWE, Webster HC, Bowman GG. 1956. A Study of Spread-F Ionospheric Echoes at Night at Brisbane. I. Range Spreading (Experimental). Aust J Phys 9: 247–271. [CrossRef] [Google Scholar]
  • Mwene AM, Earle GD, McClure PJ. 2004. Seasonal and longitudinal variations of midlatitude topside spread echoes based on ISS-b observations. AGU Fall Meeting Abstracts [Google Scholar]
  • Oikonomou C, Haralambous H, Haldoupis C, Meek C. 2014. Sporadic E tidal variabilities observed with the Cyprus Digisonde. J Atmos Terr Phys 119: 173–183. [CrossRef] [Google Scholar]
  • Otsuka Y, Shiokawa K, Ogawa T, Yokoyama T, Yamamoto M. 2009. Spatial relationship of nighttime medium‐scale traveling ionospheric disturbances and F region field‐aligned irregularities observed with two spaced all‐sky airglow imagers and the middle and upper atmosphere radar. J Geophys Res 114. DOI: 10.1029/2008JA013902. [Google Scholar]
  • Perkins FW. 1973. Spread F and ionospheric currents. J Geophys Res 78: 218–226. [CrossRef] [Google Scholar]
  • Rastogi RG. 1977. Equatorial range spread F and high multiple echoes from the F region. Proc Ind Acad Sci Sect A 85: 230–235. [Google Scholar]
  • Rastogi RG, Klobuchar JA. 1990. Ionospheric electron content within the equatorial F2 layer anomaly belt. J Geophys Res 95: 19045–19052. [CrossRef] [Google Scholar]
  • Reinisch BW, Galkin IA, Khmyrov GM. 2009. The new digisonde for research and monitoring applications. Radio Sci 44: RS0A24. DOI:10.1029/2008RS004115. [CrossRef] [Google Scholar]
  • Shimazaki T. 1962. A statistical study of occurrence probability of spread F at high latitudes. J Geophys Res 67: 4617–4634. [CrossRef] [Google Scholar]
  • Shiokawa K, Ihara C, Otsuka Y, Ogawa T. 2003. Statistical study of nighttime medium‐scale traveling ionospheric disturbances using midlatitude airglow images. J Geophys Res 108. DOI:10.1029/2002JA009491. [Google Scholar]
  • Singleton DG. 1957. A Study of Spread F ionospheric echoes at night at Brisbane. III. Frequency spreading. Aust J Phys 10: 60–76. [CrossRef] [Google Scholar]
  • Singleton DG. 1968. The morphology of spread‐F occurrence over half a sunspot cycle. J Geophys Res 73: 295–308. [CrossRef] [Google Scholar]
  • Swartz WE, Collins SC, Kelley MC, Makela JJ, Kudeki E, Franke S, Urbina J. 2002. First observations of an F-region turbulent upwelling coincident with severe E-region plasma and neutral atmosphere perturbations. J Atmos Sol Terr Phys 64: 1545–1556. [CrossRef] [Google Scholar]
  • Tsunoda RT. 2008. Satellite traces: an ionogram signature for large‐scale wave structure and a precursor for equatorial spread F. Geophys Res Lett 35. DOI:10.1029/2008GL035706. [Google Scholar]
  • Tsunoda RT. 2009. Multi‐reflected echoes: another ionogram signature of large‐scale wave structure. Geophys Res Lett 36. DOI:10.1029/2008GL036221. [CrossRef] [Google Scholar]
  • Tsunoda RT, Towle DM. 1979. On the spatial relationship of 1‐meter equatorial spread‐F irregularities and depletions in total electron content. Geophys Res Lett 6: 873–876. [CrossRef] [Google Scholar]
  • Tsunoda RT, White BR. 1981. On the generation and growth of equatorial backscatter plumes 1. Wave structure in the bottomside F layer. J Geophys Res 86: 3610–3616. [CrossRef] [Google Scholar]
  • Tsunoda RT, Cosgrove RB. 2001. Coupled electrodynamics in the nighttimemidlatitude ionosphere. Geophys Res Lett 28: 4171–4174. DOI:10.1029/2001GL013245. [CrossRef] [Google Scholar]
  • Tsunoda RT, Ecklund WL. 2007. On the post‐sunset rise of the equatorial F layer and superposed upwellings and bubbles. Geophys Res Lett 34. DOI:10.1029/2006GL028832. [Google Scholar]
  • Upadhayaya AK, Gupta S. 2014. A statistical analysis of occurrence characteristics of Spread-F irregularities over Indian region. J Atmos Sol Terr Phys 112: 1–9. [CrossRef] [Google Scholar]
  • Verhulst T, Altadill D, Mielich J, Reinisch B, Galkin I, Mouzakis A, Belehaki A, Buresova D, Stanimir S, Blanch E, Kouba D. 2017. Vertical and oblique HF sounding with a network of synchronize dionosondes. Adv Space Res. DOI:10.101/j.asr.2017.06.033. (in press). [Google Scholar]
  • Wang GJ, Shi JK, Wang X, Shang S-P., Zherebtsov G, Pirog OM. 2010. The statistical properties of spread F observed at Hainan station during the declining period of the 23rd solar cycle. Ann Geophys 28: 1263–1271. [CrossRef] [Google Scholar]
  • Weber EJ, Buchau J, Moore JG. 1980. Airborne studies of equatorial F layer ionospheric irregularities. J Geophys Res 85: 4621–4641. [CrossRef] [Google Scholar]
  • Woodman RF, La Hoz C. 1976. Radar observations of F region equatorial irregularities. J Geophys Res 81: 5447–5466. [CrossRef] [Google Scholar]
  • Xiao Z, Xiao S, Hao Y, Zhang D. 2007. Morphological features of ionospheric response to typhoon. J Geophys Res 112. DOI:10.1029/2006JA011671. [Google Scholar]
  • Xiao SG, Xiao Z, Shi JK, Zhang DH, Feng XS, Hao YQ, Huang WQ. 2009. Observational facts in revealing a close relation between acousticgravity waves and midlatitude spread F. J Geophys Res 114: A01303. DOI:10.1029/2008JA013747. [Google Scholar]
  • Yokoyama T, Hysell DL, Otsuka Y, Yamamoto M. 2009. Three‐dimensional simulation of the coupled Perkins and Es‐layer instabilities in the nighttime midlatitude ionosphere. J Geophys Res 114. DOI:10.1029/2008JA013789. [Google Scholar]
  • Zhang Y, Wan W, Li G, Liu L, Hu L, Ning B. 2015. A comparative study of GPS ionospheric scintillations and ionogram spread F over Sanya. Ann Geophys 33: 1421–1430. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.