J. Space Weather Space Clim.
Volume 8, 2018
Measurement, Specification and Forecasting of the Solar Energetic Particle Environment and GLEs
Article Number A55
Number of page(s) 14
Published online 07 December 2018
  • Alexeev II, Belenkaya ES, Kalegaev VV, Lyutov YuG. 1993. Electric fields and field – aligned current generation in the magnetosphere. J Geophys Res 98(3): 4041–4051. [CrossRef] [Google Scholar]
  • Alexeev II, Kalegaev VV. 1995. Magnetic field and the plasma flow structure near the magnetopause. J Geophys Res 100: 19267–19276. [CrossRef] [Google Scholar]
  • Alexeev II, Kalegaev VV, Belenkaya ES, Bobrovnikov SY, Feldstein YI, Gromova LI. 2001. Dynamic model of the magnetosphere: Case study for January 9–12, 1997. J Geophys Res 106(A11): 25683–25694. [CrossRef] [Google Scholar]
  • Alexeev II, Belenkaya ES, Bobrovnikov SY, Kalegaev VV, Cumnock JA, Blomberg LG. 2007. Magnetopause mapping to the ionosphere for northward IMF. Ann Geophys 25(12): 2615–2625. [CrossRef] [Google Scholar]
  • Belenkaya ES. 2004. Magnetospheric magnetic field structure under different orientation of solar wind magnetic field. Geomagn Aeron 44(4): 435–441. [Google Scholar]
  • Blake JB, McNab MC, Mazur JE. 2001. Solar proton polar cap intensity structures as a test of magnetic field models. Adv Space Res 28(12): 1753–1757. [CrossRef] [Google Scholar]
  • Burke WJ, Kelley MC, Sagalyn RC, Smiddy M, Lai ST. 1979. Polar cap electric field structures with a northward interplanetary magnetic field. Geophys Res Lett 6(1): 21–24. [CrossRef] [Google Scholar]
  • Bütikofer R, Flückiger EO, Desorgher L, Moser MR. 2008. The extreme solar cosmic ray particle event on 20 January 2005 and its influence on the radiation dose rate at aircraft altitude. Sci Total Environ 391(2): 177–183. DOI: 10.1016/j.scitotenv.2007.10.021. [CrossRef] [Google Scholar]
  • Cowley SWH. 1973. A qualitative study of the reconnection between the Earth’s magnetic field and an interplanetary field of arbitrary orientation. Radio Sci 8(11): 903–913. [NASA ADS] [CrossRef] [Google Scholar]
  • Cowley SWH. 1983. Interpretation of observed relations between solar-wind characteristics and effects at ionospheric altitudes, in: Hultqvist B, Hagfors T, Editors. High Latitude space plasma physics, Plenum Press, New York, 225–249. [CrossRef] [Google Scholar]
  • Darchieva LA, Ivanova TA, Kovrigina LM, Sosnovets EN, Tverskaya LV. 1983. Diagnosis of magnetosphere state by solar cosmic ray data. Geomagn Aeron 23(1): 62–67. [Google Scholar]
  • Desorgher L, Kudela K, Flückiger E, Bütikofer R, Storini M, Kalegaev V. 2009. Comparison of earth’s magnetospheric magnetic field models in the context of cosmic ray physics. Acta Geophys 57(1): 75–87. [CrossRef] [Google Scholar]
  • Dungey JW. 1961. Interplanetary magnetic field and the auroral zones. Phys Rev Lett 6: 47–48. [NASA ADS] [CrossRef] [Google Scholar]
  • Farrugia CJ, Richardson IG, Burlaga LF, Lepping RP, Osherovich VA. 1993. Simultaneous observations of solar MeV particles in a magnetic cloud and in the Earth’s northern tail lobe: Implications for the global field line topology of magnetic clouds and for the entry of solar particles into the magnetosphere during cloud passage. J Geophys Res 98(9): 15497–15507. [NASA ADS] [CrossRef] [Google Scholar]
  • Flückiger EO, Smart DF, Shea MA. 1990. Determining the strength of the ring current and the magnetopause currents during the initial phase of a geomagnetic storm using cosmic ray data. J Geophys Res 95(A2): 1113–1118. DOI: 10.1029/JA095iA02p01113. [CrossRef] [Google Scholar]
  • Hudson MK, Kress BT, Mazur JE, Perry KL, Slocum PL. 2004. 3D modeling of shock-induced trapping of solar energetic particles in the Earth’s magnetosphere. J Atmos Sol Terr Phys 66: 1389–1397. DOI: 10.1016/j.jastp.2004.03.024. [CrossRef] [Google Scholar]
  • Greenwald RA, Oksavik K, Barnes R, Ruohoniemi JM, Baker J, Talaat ER. 2008. First radar measurements of ionospheric electric fields at sub-second temporal resolution. Geophys Res Lett 35, L03111. DOI: 10.1029/2007GL032164. [CrossRef] [Google Scholar]
  • Harnett EM. 2010. Deflection and enhancement of solar energy particle flux at the Moon by structures within the terrestrial magnetosphere. J Geophys Res 115: A01210. DOI: 10.1029/2009JA014209. [Google Scholar]
  • Kress BT, Hudson MK, Slocum PL. 2005. Impulsive solar energetic ion trapping in the magnetosphere during geomagnetic storms. Geophys Res Lett 32(6): L06108. DOI: 10.1029/2005GL022373. [CrossRef] [Google Scholar]
  • Kudela K, Bučik R, Bobík P. 2008. On transmissivity of low energy cosmic rays in disturbed magnetosphere. Adv Space Res 42(7): 1300–1306. DOI: 10.1016/j.asr.2007.09.033. [CrossRef] [Google Scholar]
  • Lemaire JF, Batteux SG, Slypen IN. 2005. The influence of a southward and northward turning of the interplanetary magnetic field on the geomagnetic cut-off of cosmic rays, on the mirror points positions of geomagnetically trapped particles, and on their rate of precipitations in the atmosphere. J Atmos Sol Terr Phys 67: 719–727. [CrossRef] [Google Scholar]
  • Logachev YI, Bazilevskaya GA, Vashenyuk EV, Daibog EI, Ishkov VN, et al. 2016. Catalog of solar proton events in the 23rd cycle of solar activity (1996 – 2008). Geophysical Center RAS, Moscow, Russia. DOI: 10.2205/ESDB-SAD-001, [Google Scholar]
  • Merkin VG, Goodrich CC. 2007. Does the polar cap area saturate? Geophys Res Lett 34: L09107. DOI: 10.1029/2007GL029357. [CrossRef] [Google Scholar]
  • Miroshnichenko LI, Petrov VM. 1985. Radiation condition dynamics in space, Energoatomizdat, Moscow, 152 p. [Google Scholar]
  • Michel FC, Dessler AJ. 1970. Diffusive entry of solar-flare particles into geomagnetic tail. J Geophys Res 75: 6061–6072. [CrossRef] [Google Scholar]
  • Morfill G, Quenby JJ. 1971. The entry of solar protons over the polar caps. Planet Space Science 19(11): 1541–1577. [CrossRef] [Google Scholar]
  • Paulikas GA, Blake JB. 1969. Penetration of solar protons to synchronous altitude. J Geophys Res 74: 2161–2168. DOI: 10.1029/JA074i009p02161. [CrossRef] [Google Scholar]
  • Paulikas GA. 1974. Tracing of high-latitude magnetic field lines by solar particles. Rev Geophys 12(1): 117–128. [CrossRef] [Google Scholar]
  • Pavlov NN. 2013. Solar energetic particles in the Earth magnetosphere: kinematic modeling of the “non-shock” penetration. J Phys Conf Ser 409: 012245. DOI: 10.1088/1742-6596/409/1/012245. [CrossRef] [Google Scholar]
  • Pavlov NN, Tverskaya LV, Tverskoy BA, Chuchkov EA. 1993. Variations in the radiation belt particle flux during a strong magnetic storm of March 24, 1991. Geomagn Aeron 33(6): 41–46. [Google Scholar]
  • Pereyaslova NK. 1982. Solar protons in the Earth`s magnetosphere, in: Energetic particles in the Earth`s magnetosphere, Apatity, 3–25. [Google Scholar]
  • Pereyaslova NK, Nazarova MN, Petrenko IE. 1978. Features of proton spatial distribution in polar areas during solar cosmic ray events of the 21st cycle. Phys Solariterr Potsdam, ( 8): 107–112. [Google Scholar]
  • Potemra TA, Zanetti LJ, Bythrow PF, Lui ATY. 1984. By-dependent convection patterns during northward interplanetary magnetic field. J Geophys Res 89(A11): 9753–9760. [CrossRef] [Google Scholar]
  • Richard RL, El-Alaoui M, Ashour-Abdalla M, Walker RJ. 2002. Interplanetary magnetic field control of the entry of solar energetic particles into the magnetosphere. J Geophys Res 107(8): 1184. DOI: 10.1029/2001JA000099. [CrossRef] [Google Scholar]
  • Richard RL, El-Alaoui M, Ashour-Abdalla M, Walker RJ. 2009. Modeling the entry and trapping of solar energetic particles in the magnetosphere during the November 24–25, 2001 storm. J Geophys Res 114: A04210. DOI: 10.1029/2007JA012823. [CrossRef] [Google Scholar]
  • Rodriguez JV. 2012. Undulations in MeV solar energetic particle fluxes in Earth’s magnetosphere associated with substorm magnetic field reconfigurations. J Geophys Res 117: A06229. DOI: 10.1029/2012JA017618. [CrossRef] [Google Scholar]
  • Shue J-H, Chao JK, Fu HC, Khurana KK, Russell CT, Singer HJ, Song P. 1998. Magnetopause location under extreme solar wind conditions. J Geophys Res 103: 17691–17700. [NASA ADS] [CrossRef] [Google Scholar]
  • Scholer M. 1975. Transport of energetic solar particles on closed magnetospheric field lines. Space Sci Rev 17(1): 3–44. [CrossRef] [Google Scholar]
  • Selesnick RS, Baker DN, Jaynes AN, Li X, Kanekal SG, Hudson MK, Kress BT. 2014. Observations of the inner radiation belt: CRAND and trapped solar protons. J Geophys Res (Space Phys) 119(8): 6541–6552. [CrossRef] [Google Scholar]
  • Störmer C. 1955. The polar aurora. University Press, Oxford. [Google Scholar]
  • Tsyganenko NA. 2002. A model of the near magnetosphere with a dawn–dusk asymmetry: 2. Parameterization and fitting to observations. J Geophys Res 107: A03208. DOI: 10.1029/2001JA000220. [Google Scholar]
  • Tsyganenko NA, Sitnov MI. 2005. Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms. J Geophys Res 110: DOI: 10.1029/2004JA010798. [CrossRef] [Google Scholar]
  • Tverskaya LV. 2011. Diagnosis of the magnetosphere by relativistic electrons of the outer belt and by solar proton penetration. Geomagn Aeron 51(1): 8–24. [CrossRef] [Google Scholar]
  • Tverskoy BA. 1969. Basic mechanisms of Earth’s radiation belt formation. Rev Gephys 7(1–2): 219–231. [CrossRef] [Google Scholar]
  • Tverskoy BA, Darchieva LA, Ivanova TA, Kovalskaya IY, Panasyuk MI, Sosnovets EN, Tverskaya LV, Teltsov MV. 1973. Solar cosmic ray penetration into the Earth’s magnetosphere. V Leningrad International Seminar, Leningrad, 367–385. [Google Scholar]
  • Vlasova NA, Pavlov NN, Panasyuk MI, Vedenkin NN, Ivanova TA, Lyubimov GP, Reizman SY, Tulupov VI. 2011. Some features of solar cosmic ray penetration into the earth’s magnetosphere. Cosm Res 49(6): 485–499. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.