Issue
J. Space Weather Space Clim.
Volume 8, 2018
Planetary Space Weather
Article Number A54
Number of page(s) 10
DOI https://doi.org/10.1051/swsc/2018043
Published online 03 December 2018
  • Bocchialini K, Grison B, Menvielle M, Chambodut A, Cornilleau-Wehrlin N, et al. 2018. Statistical analysis of solar events associated with storm sudden commencements over one year of solar maximum during cycle 23: Propagation from the Sun to the Earth and effects. Sol Phys 293: 75. DOI: 10.1007/s11207-018-1278-5. [CrossRef] [Google Scholar]
  • Brueckner GE, Delaboudiniere J-P, Howard RA, Paswaters SE, Cyr OC St., Schwenn R, Lamy P, Simnett GM, Thompson B, Wang D. 1998. Geomagnetic storms caused by coronal mass ejections (CMEs): March 1996 through June 1997. Geophys Res Lett 25(15): 3019–3022. DOI: 10.1029/98GL00704. [NASA ADS] [CrossRef] [Google Scholar]
  • Burlaga L, Sittler E, Mariani F, Schwenn R. 1981. Magnetic loop behind an interplanetary shock - Voyager, Helios, and IMP 8 observations. J Geophys Res 86: 6673–6684. DOI: 10.1029/JA086iA08p06673. [Google Scholar]
  • Cane HV, Richardson IG. 2003. Interplanetary coronal mass ejections in the near-Earth solar wind during 1996-2002. J Geophys Res (Space Phys) 108: 1156. DOI: 10.1029/2002JA009817. [Google Scholar]
  • Cargill PJ, Chen J, Spicer DS, Zalesak ST. 1996. Magnetohydrodynamic simulations of the motion of magnetic flux tubes through a magnetized plasma. J Geophys Res (Space Phys) 101(A3): 4855–4870. DOI: 10.1029/95JA03769. [NASA ADS] [CrossRef] [Google Scholar]
  • Davis CJ, Davies JA, Lockwood M, Rouillard AP, Eyles CJ, Harrison RA. 2009. Stereoscopic imaging of an Earth-impacting solar coronal mass ejection: A major milestone for the STEREO mission. Geophys Res Lett 36(8): L08102. DOI: 10.1029/2009GL038021. [Google Scholar]
  • Freiherr von Forstner JL, Guo J, Wimmer-Schweingruber RF, Hassler DM, Temmer M, et al. 2018. Using Forbush decreases to derive the transit time of ICMEs propagating from 1 AU to Mars. J Geophys Res (Space Phys) 123: 39–56. DOI: 10.1002/2017JA024700. [Google Scholar]
  • Gonzalez WD, Echer E, Clua-Gonzalez AL, Tsurutani BT. 2007. Interplanetary origin of intense geomagnetic storms (Dst < −100 nT) during solar cycle 23. Geophys Res Lett 34: L06101. DOI: 10.1029/2006GL028879. [CrossRef] [Google Scholar]
  • Good SW, Forsyth RJ. 2016. Interplanetary coronal mass ejections observed by MESSENGER and Venus Express. Solar Phys 291(1): 239–263. DOI: 10.1007/s11207-015-0828-3. [Google Scholar]
  • Gopalswamy N, Lara A, Lepping RP, Kaiser ML, Berdichevsky D, Cyr OC St.. 2000. Interplanetary acceleration of coronal mass ejections. Geophys Res Lett 27(2): 145–148. DOI: 10.1029/1999GL003639. [Google Scholar]
  • Gopalswamy N, Lara A, Yashiro S, Kaiser ML, Howard RA. 2001a. Predicting the 1-AU arrival times of coronal mass ejections. J Geophys Res (Space Phys) 106(A12): 29207–29217. DOI: 10.1029/2001JA000177. [CrossRef] [Google Scholar]
  • Gopalswamy N, Yashiro S, Kaiser ML, Howard RA, Bougeret JL. 2001b. Radio signatures of coronal mass ejection interaction: Coronal mass ejection cannibalism? ApJ 548: L91–L94. DOI: 10.1086/318939. [Google Scholar]
  • Gosling JT, Pizzo V, Bame SJ. 1973. Anomalously low proton temperatures in the solar wind following interplanetary shock waves – evidence for magnetic bottles? J Geophys Res 78(13): 2001–2009. DOI: 10.1029/JA078i013p02001. [Google Scholar]
  • Jian LK, Russell CT, Luhmann JG, Galvin AB. 2018. STEREO observations of interplanetary coronal mass ejections in 2007–2016. ApJ 855(2): 114. DOI: 10.3847/1538-4357/aab189. [NASA ADS] [CrossRef] [Google Scholar]
  • Kaiser ML, Kucera TA, Davila JM, Cyr OC St., Guhathakurta M, Christian E. 2008. The STEREO mission: an introduction. Space Sci Rev 136(1): 5–16. DOI: 10.1007/s11214-007-9277-0. [CrossRef] [Google Scholar]
  • Kilpua E, Koskinen HEJ, Pulkkinen TI. 2017. Coronal mass ejections and their sheath regions in interplanetary space. Living Rev Sol. Phys 14(1): 5. DOI: 10.1007/s41116-017-0009-6. [Google Scholar]
  • Lindsay GM, Luhmann JG, Russell CT, Gosling JT. 1999. Relationships between coronal mass ejection speeds from coronagraph images and interplanetary characteristics of associated interplanetary coronal mass ejections. J Geophys Res (Space Phys) 104(A6): 12515–12523. DOI: 10.1029/1999JA900051. [NASA ADS] [CrossRef] [Google Scholar]
  • Liu Y, Davies JA, Luhmann JG, Vourlidas A, Bale SD, Lin RP. 2010. Geometric triangulation of imaging observations to track coronal mass ejections continuously out to 1 AU. Astrophys J Lett 710(1): L82. DOI: 10.1088/2041-8205/710/1/L82. [NASA ADS] [CrossRef] [Google Scholar]
  • Liu Y, Richardson JD, Belcher JW. 2005. A statistical study of the properties of interplanetary coronal mass ejections from 0.3 to 5.4 AU. Planet Space Sci 53: 3–17. DOI: 10.1016/j.pss.2004.09.023. [Google Scholar]
  • Liu YD, Hu H, Wang C, Luhmann JG, Richardson JD, Yang Z, Wang R. 2016. On sun-to-earth propagation of coronal mass ejections: II. slow events and comparison with others. Astrophys J Suppl Ser 222(2): 23. DOI: 10.3847/0067-0049/222/2/23. [Google Scholar]
  • Lugaz N, Farrugia CJ, Davies JA, Mstl C, Davis CJ, Roussev II, Temmer M. 2012. The deflection of the two interacting coronal mass ejections of 2010 May 23–24 as revealed by combined in situ measurements and heliospheric imaging. ApJ 759(1): 68. DOI: 10.1088/0004-637X/759/1/68. [CrossRef] [Google Scholar]
  • Malandraki OE, Lario D, Lanzerotti LJ, Sarris ET, Geranios A, Tsiropoula G. 2005. October/November 2003 ICMEs: ACE/EPAM solar energetic particle observations. J Geophys Res 110: A09S06. DOI: 10.1029/2004JA010926. Special Section: Violent Sun-Earth connection events of October-November 2003. [Google Scholar]
  • Malandraki OE, Marsden RG, Tranquille C, Forsyth RJ, Elliott HA, Lanzerotti LJ, Geranios A. 2007. Energetic particle observations by Ulysses during the declining phase of solar cycle 23. J Geophys Res, 112, A06111. DOI: 10.1029/2006JA011876. [Google Scholar]
  • Manchester W, Kilpua EKJ, Liu YD, Lugaz N, Riley P, Török T, Vršnak B. 2017. The physical processes of CME/ICME evolution. Space Sci Rev 212(3): 1159–1219. DOI: 10.1007/s11214-017-0394-0. [NASA ADS] [CrossRef] [Google Scholar]
  • Möstl C, Isavnin A, Boakes PD, Kilpua EKJ, Davies JA, et al. 2017. Modeling observations of solar coronal mass ejections with heliospheric imagers verified with the heliophysics system observatory. Space Weather 15(7): 955–970. DOI: 10.1002/2017SW001614. [CrossRef] [Google Scholar]
  • Möstl C, Rollett T, Frahm RA, Liu YD, Long DM, et al. 2015. Strong coronal channelling and interplanetary evolution of a solar storm up to Earth and Mars. Nat Commun 6: 7135. DOI: 10.1038/ncomms8135. [Google Scholar]
  • Odstrcil D, Pizzo VJ. 1999. Distortion of the interplanetary magnetic field by three-dimensional propagation of coronal mass ejections in a structured solar wind. J Geophys Res 104: 28225–28240. DOI: 10.1029/1999JA900319. [NASA ADS] [CrossRef] [Google Scholar]
  • Odstrcil D, Pizzo VJ. 2009. Numerical heliospheric simulations as assisting tool for interpretation of observations by STEREO heliospheric imagers. Sol Phys 259: 297–309. DOI: 10.1007/s11207-009-9449-z. [NASA ADS] [CrossRef] [Google Scholar]
  • Prise AJ, Harra LK, Matthews SA, Arridge CS, Achilleos N. 2015. Analysis of a coronal mass ejection and corotating interaction region as they travel from the Sun passing Venus, Earth, Mars, and Saturn. J Geophys Res (Space Phys) 120: 1566–1588. DOI: 10.1002/2014JA020256. [CrossRef] [Google Scholar]
  • Richardson IG, Cane HV. 1993. Signatures of shock drivers in the solar wind and their dependence on the solar source location. J Geophys Res (Space Phys) 98(A9): 15295–15304. DOI: 10.1029/93JA01466. [CrossRef] [Google Scholar]
  • Richardson IG, Cane HV. 2010. Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996–2009): Catalog and summary of properties. Sol Phys 264: 189–237. DOI: 10.1007/s11207-010-9568-6. [CrossRef] [Google Scholar]
  • Rouillard A, Lavraud B, Génot V, Bouchemit M, Dufourg N, et al. 2017. A propagation tool to connect remote-sensing observations with in-situ measurements of heliospheric structures. Planet Space Sci 147: 61–77. DOI: 10.1016/j.pss.2017.07.001. [CrossRef] [Google Scholar]
  • Vršnak B, Žic T, Vrbanec D, Temmer M, Rollett T, et al. 2013. Propagation of interplanetary coronal mass ejections: the drag-based model. Sol Phys 285: 295–315. DOI: 10.1007/s11207-012-0035-4. [NASA ADS] [CrossRef] [Google Scholar]
  • Winslow RM, Lugaz N, Philpott LC, Schwadron NA, Farrugia CJ, Anderson BJ, Smith CW. 2015. Interplanetary coronal mass ejections from MESSENGER orbital observations at Mercury. J Geophys Res (Space Phys) 120(8): 6101–6118. DOI: 10.1002/2015JA021200. [Google Scholar]
  • Winslow RM, Schwadron NA, Lugaz N, Guo J, Joyce CJ, et al. 2018. Opening a window on ICME-driven GCR modulation in the inner solar system. ApJ 856: 139. DOI: 10.3847/1538-4357/aab098. [Google Scholar]
  • Witasse O, Sánchez-Cano B, Mays ML, Kajdič P, Opgenoorth H, et al. 2017. Interplanetary coronal mass ejection observed at STEREO-A, Mars, comet 67P/Churyumov-Gerasimenko, Saturn, and New Horizons en route to Pluto: Comparison of its Forbush decreases at 1.4, 3.1, and 9.9 AU. J Geophys Res (Space Phys) 122: 7865–7890. DOI: 10.1002/2017JA023884. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.