Open Access
Issue |
J. Space Weather Space Clim.
Volume 8, 2018
Measurement, Specification and Forecasting of the Solar Energetic Particle Environment and GLEs
|
|
---|---|---|
Article Number | A04 | |
Number of page(s) | 19 | |
DOI | https://doi.org/10.1051/swsc/2017031 | |
Published online | 26 January 2018 |
- Asvestari E, Willamo T, Gil A, Usoskin IG, Kovaltsov GA, Mikhailov VV, Mayorov A. 2017. Analysis of ground level enhancements (GLE): extreme solar energetic particle events have hard spectra. Adv Space Res 60: 781–787. DOI:10.1016/j.asr.2016.08.043. [Google Scholar]
- Atwell W, Tylka AJ, Dietrich WF, Rojdev K, Matzkind C. Probability estimates of solar proton doses during periods of low sunspot number for short duration missions. In: Proceedings of the 46th International Conference on Environmental Systems. Vienna, Austria, 2016. URL: https://ttu-ir.tdl.org/ttu-ir/handle/2346/67739. [Google Scholar]
- Baker DN, Mason GM, Figueroa O, Colon G, Watzin JG, Aleman RM. 1993. An overview of the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) mission. IEEE Trans Geosci Remote Sens 31: 531–541. DOI:10.1109/36.225519. [CrossRef] [Google Scholar]
- Band D, Matteson J, Ford L, Schaefer B, Palmer D et al. 1993. BATSE observations of gamma-ray burst spectra. I - Spectral diversity. Astrophys J 413: 281–292. DOI:10.1086/172995. [CrossRef] [Google Scholar]
- Belov AV, Eroshenko EA, Kryakunova ON, Kurt VG, Yanke VG. 2010. Ground level enhancements of solar cosmic rays during the last three solar cycles. Geomagn Aeron 50: 21–33. DOI:10.1134/S0016793210010032. [CrossRef] [Google Scholar]
- Clem JM, Dorman LI. 2000. Neutron monitor response functions. Space Sci Rev 93: 335–359. DOI:10.1023/A:1026508915269. [NASA ADS] [CrossRef] [Google Scholar]
- Cliver EW. 2006. The unusual relativistic solar proton events of 1979 August 21 and 1981 May 10. Astrophys J 639: 1206–1217. DOI:10.1086/499765. [NASA ADS] [CrossRef] [Google Scholar]
- Cliver EW, Kahler SW, Shea MA, Smart DF. 1982. Injection onsets of 2 GeV protons, 1 MeV electrons, and 100 KeV electrons in solar cosmic ray flares. Astrophys J 260: 362–370. DOI:10.1086/160261. [NASA ADS] [CrossRef] [Google Scholar]
- Cohen CMS, Mewaldt RA, Leske RA, Cummings AC, Stone EC, Wiedenbeck ME, Christian ER, von Rosenvinge TT. 1999. New observations of heavy-ion-rich solar particle events from ACE. Geophys Res Lett 26: 2697–2700. DOI:10.1029/1999GL900560. [NASA ADS] [CrossRef] [Google Scholar]
- Dallal GE, Wilkinson L. 1986. An analytic approximation to the distribution of lilliefors's test statistic for normality. Am Stat 40: 294–296. DOI:10.1080/00031305.1986.10475419. [Google Scholar]
- Desai MI, Mason GM, Dayeh MA, Ebert RW, Mccomas DJ, Li G, Cohen CMS, Mewaldt RA, Schwadron NA, Smith CW. 2016a. Spectral properties of large gradual solar energetic particle events. I. Fe, O, and Seed material. Astrophys J 816: 68. DOI:10.3847/0004-637X/816/2/68, [CrossRef] [Google Scholar]
- Desai MI, Mason GM, Dayeh MA, Ebert RW, McComas DJ, Li G, Cohen CMS, Mewaldt RA, Schwadron NA, Smith CW. 2016b. Spectral properties of large gradual solar energetic particle events. II. Systematic Q/M dependence of heavy ion spectral breaks. Astrophys J 828: 106. DOI:10.3847/0004-637X/828/2/106. [CrossRef] [Google Scholar]
- Dodson HW, Hedeman ER. 1969. Solar circumstances at the time of the Cosmic ray increase on January 28, 1967. Sol Phys 9: 278–295. DOI:10.1007/BF02391649. [CrossRef] [Google Scholar]
- Facius R, Reitz G. 2007. Space weather impacts on space radiation protection. In: Space Weather-Physics and Effects. Springer, Berlin, Heidelberg, 289–352. URL: http://dx.doi.org/10.1007/978-3-540-34578-7_11. [Google Scholar]
- Feynman J, Armstrong TP, Dao-Gibner L, Silverman S. 1990. New interplanetary proton fluence model. J Spacecr Rockets 27: 403–410. DOI:10.2514/3.26157. [Google Scholar]
- Feynman J, Gabriel S. 1996. High-energy charged particles in space at one astronomical unit. IEEE Trans Nucl Sci 43: 344–352. DOI:10.1109/23.490754. [CrossRef] [Google Scholar]
- Feynman J, Spitale G, Wang J, Gabriel S. 1993. Interplanetary proton fluence model − JPL 1991. J Geophys Res: Space Phys 98: 13. DOI:10.1029/92JA02670. [CrossRef] [Google Scholar]
- Firoz KA, Cho K-S, Hwang J, Phani Kumar DV, Lee JJ, Oh SY, Kaushik SC, Kudela K, Rybanský M, Dorman LI. 2010. Characteristics of ground-level enhancement-associated solar flares, coronal mass ejections, and solar energetic particles. J Geophys Res: Space Phys 115: A09105. DOI:10.1029/2009JA015023. [CrossRef] [Google Scholar]
- Glover A, Hilgers A, Rosenqvist L, Bourdarie S. 2008. Interplanetary proton cumulated fluence model update. Adv Space Res 42: 1564–1568. DOI:10.1016/j.asr.2007.08.023. [CrossRef] [Google Scholar]
- Gopalswamy N, Xie H, Akiyama S, Yashiro S, Usoskin IG, Davila JM. 2013. The first ground level enhancement event of solar cycle 24: direct observation of shock formation and particle release heights. Astrophys J Lett 765: L30. DOI:10.1088/2041-8205/765/2/L30. [Google Scholar]
- Gopalswamy N, Xie H, Yashiro S, Akiyama S, Mäkelä P, Usoskin IG. 2012. Properties of ground level enhancement events and the associated solar eruptions during solar cycle 23. Space Sci Rev 171: 23–60. DOI:10.1007/s11214-012-9890-4. [Google Scholar]
- Grechnev VV, Kurt VG, Chertok IM, Uralov AM, Nakajima H et al. 2008. An extreme solar event of 20 January 2005: properties of the flare and the origin of energetic particles. Sol Phys 252: 149–177. DOI:10.1007/s11207-008-9245-1. [NASA ADS] [CrossRef] [Google Scholar]
- Jiggens PTA, Gabriel SB, Heynderickx D, Crosby N, Glover A, Hilgers A. 2012. ESA SEPEM project: peak flux and fluence model. IEEE Trans Nucl Sci 59: 1066–1077. DOI:10.1109/TNS.2012.2198242. [CrossRef] [Google Scholar]
- King JH. 1974. Solar proton fluences for 1977–1983 space missions. J Spacecr Rocket 11: 401. DOI:10.2514/3.62088. [Google Scholar]
- Kovaltsov GA, Usoskin IG, Cliver EW, Dietrich WF, Tylka AJ. 2014. Fluence ordering of solar energetic proton events using cosmogenic radionuclide data. Sol Phys 289: 4691–4700. DOI:10.1007/s11207-014-0606-7. [NASA ADS] [CrossRef] [Google Scholar]
- Kudela K, Shea MA, Smart DF, Gentile LC. 1993. Relativistic solar particle events recorded by the Lomnicky Stit neutron monitor. In Leahy DA, Hicks RB, Venkatesan D, eds. Proceedings of the 23rd International Cosmic Ray Conference, 3, p. 71. Calgary, Canada. URL: http://adsabs.harvard.edu/abs/1993ICRC..3..71K. [Google Scholar]
- Lanzerotti LJ. 2007. Space weather effects on communications. In: Space Weather-Physics and Effects. Springer, Praxis Publishing, Chichester, pp. 247–268. URL: http://dx.doi.org/10.1007/978-3-540-34578-7_9. [CrossRef] [Google Scholar]
- Lilliefors HA. 1967. On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J Am Stat Assoc 62: 399–402, URL: http://www.jstor.org/stable/2283970. [CrossRef] [Google Scholar]
- Mason GM, Mazur JE, Dwyer JR. 1999. 3He enhancements in large solar energetic particle events. Astrophys J Lett 525: L133–L136. DOI:10.1086/312349. [NASA ADS] [CrossRef] [Google Scholar]
- McCracken KG, Moraal H, Stoker PH. 2008. Investigation of the multiple-component structure of the 20 January 2005 cosmic ray ground level enhancement. J Geophys Res: Space Phys 113: A12101, DOI:10.1029/2007JA012829. [CrossRef] [Google Scholar]
- McGuire RE, von Rosenvinge TT, McDonald FB. 1986. The composition of solar energetic particles. Astrophys J 301: 938–961. DOI:10.1086/163958. [CrossRef] [Google Scholar]
- Mewaldt RA, Cohen CMS, Cook WR, Cummings AC, Davis AJ et al. 2008. The low-energy telescope (LET) and SEP central electronics for the STEREO mission. Space Sci Rev 136: 285–362. DOI:10.1007/s11214-007-9288-x. [Google Scholar]
- Mewaldt RA, Looper MD, Cohen CMS, Haggerty DK, Labrador AW, Leske RA, Mason GM, Mazur JE, von Rosenvinge TT. 2012. Energy spectra, composition, and other properties of ground-level events during solar cycle 23. Space Sci Rev 171: 97–120. DOI:10.1007/s11214-012-9884-2. [CrossRef] [Google Scholar]
- Meyer J-P. 1985. The baseline composition of solar energetic particles. Astrophys J Suppl Ser 57: 151–171. DOI:10.1086/191000. [NASA ADS] [CrossRef] [Google Scholar]
- Miyake F, Nagaya K, Masuda K, Nakamura T. 2012. A signature of cosmic-ray increase in AD 774-775 from tree rings in Japan. Nature 486: 240–242. DOI:10.1038/nature11123. [NASA ADS] [CrossRef] [Google Scholar]
- Möbius E, Popecki M, Klecker B, Kistler LM, Bogdanov A et al. 1999. Energy dependence of the ionic charge state distribution during the November 1997 solar energetic particle event. Geophys Res Lett 26: 145–148. DOI:10.1029/1998GL900131. [CrossRef] [Google Scholar]
- Nymmik RA. 1998. Radiation environment induced by cosmic ray particle fluxes in the international space station orbit according to recent galactic and solar cosmic ray models. Adv Space Res 21: 1689–1698. DOI:10.1016/S0273-1177(98)00015-5. [CrossRef] [Google Scholar]
- Nymmik RA. 1999. Probabilistic model for fluences and peak fluxes of solar energetic particles. Radiat Meas 30: 287–296. DOI:10.1016/S1350-4487(99)00065-7. [CrossRef] [Google Scholar]
- Nymmik RA, Panasyuk MI, Pervaja TI, Suslov AA. 1992. A model of galactic cosmic ray fluxes. Nucl Tracks Radiat Meas 20: 427–429. DOI:10.1016/1359-0189(92)90028-T. [CrossRef] [Google Scholar]
- Onsager T, Grubb R, Kunches J, Matheson L, Speich D, Zwickl R, Sauer H. 1996. Operational uses of the GOES energetic particle detectors. Proceedings of SPIE, Denver, Colorado, USA, pp.281–290. DOI:10.1117/12.254075. [CrossRef] [Google Scholar]
- Reames DV. 1988. Bimodal abundances in the energetic particles of solar and interplanetary origin. Astrophys J 330: L71–L75. DOI:10.1086/185207. [Google Scholar]
- Reames DV. 1999. Particle acceleration at the Sun and in the heliosphere. Space Sci Rev 90: 413–449. DOI:10.1023/A:1005105831781. [NASA ADS] [CrossRef] [Google Scholar]
- Reames DV. 2013. The two sources of solar energetic particles. Space Sci Rev 175: 53–92. DOI:10.1007/s11214-013-9958-9. [Google Scholar]
- Reames DV, von Rosenvinge TT, Lin RP. 1985. Solar He-3-rich events and nonrelativistic electron events − A new association. Astrophys J 292: 716–724. DOI:10.1086/163203. [Google Scholar]
- Reedy RC. 2012. Update on solar-proton fluxes during the last five solar activity cycles. In: 43rd Lunar and Planetary Science Conference, 1285. The Woodlands: Texas, USA, URL: http://adsabs.harvard.edu/abs/2012LPI..43.1285R. [Google Scholar]
- Rodriguez JV, Sandberg I, Mewaldt RA, Daglis IA, Jiggens P. 2017. Validation of the effect of cross-calibrated GOES solar proton effective energies on derived integral fluxes by comparison with STEREO observations. Space Weather 15: 290–309. DOI:10.1002/2016SW001533. [CrossRef] [Google Scholar]
- Rosenqvist L, Hilgers A, Evans H, Daly E, Hapgood M, Stamper R, Zwickl R, Bourdarie S, Boscher D. 2005. Toolkit for updating interplanetary proton cumulated fluence models. J Spacecr Rocket 42: 1077–1090. DOI:10.2514/1.8211. [CrossRef] [Google Scholar]
- Sandberg I, Jiggens P, Heynderickx D, Daglis IA. 2014. Cross calibration of NOAA GOES solar proton detectors using corrected NASA IMP-8/GME data. Geophys Res Lett 41: 4435–4441. DOI:10.1002/2014GL060469. [CrossRef] [Google Scholar]
- Sandroos A, Vainio R. 2007. Simulation results for heavy ion spectral variability in large gradual solar energetic particle events. Astrophys J Lett 662: L127–L130. DOI:10.1086/519378. [NASA ADS] [CrossRef] [Google Scholar]
- Sandroos A, Vainio R. 2009. Reacceleration of flare ions in coronal and interplanetary shock waves. Astrophys J Suppl Ser 181: 183–196. DOI:10.1088/0067-0049/181/1/183. [CrossRef] [Google Scholar]
- Shea MA, Smart DF. 2000. Fifty years of cosmic radiation data. Space Sci Rev 93: 229–262. DOI:10.1023/A:1026500713452. [Google Scholar]
- Shea MA, Smart DF, Gentile L, Campbell JM. 1995. Review of ground-level solar cosmic ray enhancements during the 22nd solar cycle. In N. Iucci, E. Lamanna, eds, Proceedings of the 24th International Cosmic Ray Conference, Rome, Italy, vol. 4, p. 244, URL: http://adsabs.harvard.edu/abs/1995ICRC..4.244S. [Google Scholar]
- Simpson JA. 1958. Cosmic-radiation neutron intensity monitor. In: Annals of the Int. Geophysical Year IV, Part VII, 351, Pergamon Press, London. URL:http://nsidc.org/arc/archives-catalog/index.php?p=digitallibrary/getfileid=98. [Google Scholar]
- Simpson JA, Fonger W, Treiman SB. 1953. Cosmic radiation intensity-time variations and their origin. I. Neutron intensity variation method and meteorological factors. Phys Rev 90: 934–950. DOI:10.1103/PhysRev.90.934. [CrossRef] [Google Scholar]
- Singh AK, Siingh D, Singh RP. 2010. Space weather: physics, effects and predictability. Surv Geophys 31: 581–638. DOI:10.1007/s10712-010-9103-1. [Google Scholar]
- Smart DF, Shea MA. 1999. Comment on the use of GOES solar proton data and spectra in solar proton dose calculations. Radiat Meas 30: 327–335. DOI:10.1016/S1350-4487(99)00059-1. [CrossRef] [Google Scholar]
- Smart DF, Shea MA, Tylka AJ, Boberg PR. 2006. A geomagnetic cutoff rigidity interpolation tool: accuracy verification and application to space weather. Adv Space Res 37: 1206–1217, DOI:10.1016/j.asr.2006.02.011. [CrossRef] [Google Scholar]
- Stoker PH, Dorman LI, Clem JM. 2000. Neutron monitor design improvements. Space Sci Rev 93: 361–380, DOI:10.1023/A:1026560932107. [NASA ADS] [CrossRef] [Google Scholar]
- Švestka Z, Simon P, eds. 1975. Catalog of solar particle events 1955-1969. Astrophys Space Sci Libr 49: DOI:10.1007/978-94-010-1742-8. [Google Scholar]
- Taylor B, Vacanti G, Maddox E, Underwood CI. 2011. The Interplanetary electron model (IEM). IEEE Trans Nucl Sci 58: 2785–2792. DOI:10.1109/TNS.2011.2171718. [CrossRef] [Google Scholar]
- Thakur N, Gopalswamy N, Xie H, Mäkelä P, Yashiro S, Akiyama S, Davila JM. 2014. Ground level enhancement in the 2014 January 6 solar energetic particle event. Astrophys J Lett 790: L13. DOI:10.1088/2041-8205/790/1/L13. [Google Scholar]
- Tylka AJ, Cohen CMS, Dietrich WF, Lee MA, Maclennan CG, Mewaldt RA, Ng CK, Reames DV. 2005. Shock geometry, seed populations, and the origin of variable elemental composition at high energies in large gradual solar particle events. Astrophys J 625: 474–495. DOI:10.1086/429384. [CrossRef] [Google Scholar]
- Tylka AJ, Dietrich WF. 2009. A new and comprehensive analysis of proton spectra in ground-level enhanced (gle) solar particle events. In: Proceedings of the 31st International Cosmic Ray Conference. M. Giller, J. Szabelski, eds, Poland. URL:http://icrc2009.uni.lodz.pl/proc/pdf/icrc0273.pdf. [Google Scholar]
- Tylka AJ, Lee MA. 2006. A model for spectral and compositional variability at high energies in large, gradual solar particle events. Astrophys J 646: 1319–1334. DOI:10.1086/505106. [CrossRef] [Google Scholar]
- Usoskin IG, Kovaltsov GA. 2012. Occurrence of extreme solar particle events: assessment from historical proxy data. Astrophys J 757: 92. DOI:10.1088/0004-637X/757/1/92. [NASA ADS] [CrossRef] [Google Scholar]
- Usoskin IG, Solanki SK, Kovaltsov GA, Beer J, Kromer B. 2006. Solar proton events in cosmogenic isotope data. Geophys Res Lett 33: L08107. DOI:10.1029/2006GL026059. [Google Scholar]
- Vainio R, Desorgher L, Heynderickx D, Storini M, Flückiger E et al. 2009. Dynamics of the earth′s particle radiation environment. Space Sci Rev 147: 187–231. DOI:10.1007/s11214-009-9496-7. [CrossRef] [Google Scholar]
- Vainio R, Raukunen O, Tylka AJ, Dietrich WF, Afanasiev A. 2017. Why is solar cycle 24 an inefficient producer of high-energy particle events ? Astron Astrophys 604: A47. DOI:10.1051/0004-6361/201730547. [CrossRef] [EDP Sciences] [Google Scholar]
- von Rosenvinge TT, Reames DV, Baker R, Hawk J, Nolan JT et al. 2008. The high energy telescope for STEREO. Space Sci Rev 136: 391–435. DOI:10.1007/s11214-007-9300-5. [Google Scholar]
- Xapsos MA, O'Neill PM, O'Brien TP. 2013. Near-earth space radiation models. IEEE Trans Nucl Sci 60: 1691–1705. DOI:10.1109/TNS.2012.2225846. [CrossRef] [Google Scholar]
- Xapsos MA, Stauffer C, Gee GB, Barth JL, Stassinopoulos EG, McGuire RE. 2004. Model for solar proton risk assessment. IEEE Trans Nucl Sci 51: 3394–3398. DOI:10.1109/TNS.2004.839159. [CrossRef] [Google Scholar]
- Xapsos MA, Stauffer C, Jordan T, Barth JL, Mewaldt RA. 2007. Model for cumulative solar heavy ion energy and linear energy transfer spectra. IEEE Trans Nucl Sci 54: 1985–1989. DOI:10.1109/TNS.2007.910850. [CrossRef] [Google Scholar]
- Xapsos MA, Summers GP, Barth JL, Stassinopoulos EG, Burke EA. 2000. Probability model for cumulative solar proton event fluences. IEEE Trans Nucl Sci 47: 486–490. DOI:10.1109/23.856469. [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.