Open Access
Issue
J. Space Weather Space Clim.
Volume 8, 2018
Article Number A46
Number of page(s) 11
DOI https://doi.org/10.1051/swsc/2018032
Published online 22 October 2018
  • Adriani O, Barbarino G, Bazilevskaya G, Bellotti R, Boezio M, et al. 2016. Measurements of cosmic-ray Hydrogen and Helium isotopes with the PAMELA experiment. ApJ 818 (1). DOI: 10.3847/0004-637X/818/1/68. [Google Scholar]
  • Aguilar M, Alcaraz J, Allaby J, Alpat B, Ambrosi G, et al. 2010. Relative composition and energy spectra of light nuclei in cosmic rays: Results from AMS-01 ApJ 724 (1): 329–340. DOI: 10.1088/0004-637X/724/1/329. [NASA ADS] [CrossRef] [Google Scholar]
  • Baker D. 1998. What is space weather? Adv Space Res 22 (1): 7–16. [CrossRef] [Google Scholar]
  • Bazilevskaya GA, Usoskin IG, Flückiger E, Harrison R, Desorgher L, et al. 2008. Cosmic Ray induced ion production in the atmosphere. Space Sci Rev 137: 149–173. DOI: 10.1007/s11214-008-9339-y. [NASA ADS] [CrossRef] [Google Scholar]
  • Bieber J, Clem J, Evenson P, Pyle R, Sáiz A, Ruffolo D. 2013. Giant ground level enhancement of relativistic solar protons on 2005 January 20. I. Spaceship earth observations. ApJ 771 (2): 92. DOI: 10.1088/0004-637X/771/2/92. [CrossRef] [Google Scholar]
  • Bieber J, Evenson P. 1995. Spaceship Earth - An Optimized Network of Neutron Monitors. In Proc. of 24th ICRC Rome, Italy, 28 August – 8 September 1995, 4: 1316–1319. [Google Scholar]
  • Bombardieri D, Duldig M, Humble J, Michael K. 2008. An improved model for relativistic solar proton acceleration applied to the 2005 January 20 and earlier events ApJ 682 (2): 1315–1327. DOI: 10.1086/589494. [CrossRef] [Google Scholar]
  • Bombardieri D, Duldig M, Michael K, Humble J. 2006. Relativistic proton production during the 2000 July 14 solar event: The case for multiple source mechanisms. ApJ 644 (1): 565–574. DOI: 10.1086/501519. [CrossRef] [Google Scholar]
  • Bombardieri D, Michael K, Duldig M, Humble J. 2007. Relativistic proton production during the 2001 April 15 solar event. ApJ 665 (1): 813–823. DOI: 10.1086/519514. [CrossRef] [Google Scholar]
  • Bottollier-Depois J, Beck P, Bennett B, Bennett L, Bütikofer R, et al. 2009. Comparison of codes assessing galactic cosmic radiation exposure of aircraft crew. Radiat Prot Dosim 136 (4): 317–323. DOI: 10.1093/rpd/ncp159. [CrossRef] [Google Scholar]
  • Burger R, Potgieter M, Heber B. 2000. Rigidity dependence of cosmic ray proton latitudinal gradients measured by the Ulysses spacecraft: Implication for the diffusion tensor. J Geophys Res, 105, 27447–27455. DOI: 10.1029/2000JA000153. [NASA ADS] [CrossRef] [Google Scholar]
  • Bütikofer R, Flückiger E. 2013. Differences in published characteristics of GLE60 and their consequences on computed radiation dose rates along selected flight paths. J Phys Conf Ser, 409 (1), 012166. DOI: 10.1088/1742-6596/409/1/012166. [CrossRef] [Google Scholar]
  • Bütikofer R, Flückiger E. 2015. What are the causes for the spread of GLE parameters deduced from NM data? J Phys: Conf Ser, 632 (1), 012053, DOI: 10.1088/17426596/632/1/012053. [CrossRef] [Google Scholar]
  • Bütikofer R, Flückiger E, Desorgher L, Moser M. 2008. The extreme solar cosmic ray particle event on 20 January 2005 and its influence on the radiation dose rate at aircraft altitude. Sci Total Environ, 391(2–3), 177–183. [CrossRef] [Google Scholar]
  • Bütikofer R, Flückiger E, Desorgher L, Moser M, Pirard B. 2009. The solar cosmic ray ground-level enhancements on 20 January 2005 and 13 December 2006. Adv Space Res 43 (4): 499–503. [CrossRef] [Google Scholar]
  • Caballero-Lopez R, Moraal H. 2004. Limitations of the force field equation to describe cosmic ray modulation. J Geophys Res 109: A01101, DOI: 10.1029/2003JA010098. [Google Scholar]
  • Carmichael H. 1968. Cosmic rays (instruments). In Ann. IQSY, vol. 1, Minnis CM (Ed.), MIT Press, Cambridge, MA, pp. 178–197. [Google Scholar]
  • Cliver E, Kahler S, Reames D. 2004. Coronal Shocks and Solar Energetic Proton Events. ApJ 605: 902–910, 10.1086/382651. [NASA ADS] [CrossRef] [Google Scholar]
  • Copeland K. 2017. Cari-7A: Development and validation. Radiat Prot Dosim 175 (4): 419–431. DOI: 10.1093/rpd/ncw369. [Google Scholar]
  • Copeland K, Sauer H, Duke F, Friedberg W. 2008. Cosmic radiation exposure of aircraft occupants on simulated high-latitude flights during solar proton events from 1 January 1986 through 1 January 2008. Adv Space Res 42 (6): 1008–1029. DOI: 10.1016/j.asr.2008.03.001. [CrossRef] [Google Scholar]
  • Cramp J, Duldig M, Flückiger E, Humble J, Shea M, Smart D. 1997. The October 22, 1989, solar cosmic enhancement: An analysis the anisotropy spectral characteristics. J Geophys Res, 102, 24237–24248. DOI: 10.1029/97JA01947. [NASA ADS] [CrossRef] [Google Scholar]
  • Cramp J, Duldig M, Humble J. 1997. The effect of a distorted interplanetary magnetic field configuration on the December 7–8, 1982, ground level enhancement.J Geophys Res A: Space Phys 102 (A3): 4919–4925. [CrossRef] [Google Scholar]
  • Debrunner H, Flückiger E, Gradel H, Lockwood J, Mcguire R. 1988. Observations related to the acceleration, injection, and interplanetary propagation of energetic protons during the solar cosmic ray event on February 16, 1984. J Geophys Res 93 (A7): 7206–7216. DOI: 10.1029/JA093iA07p07206. [NASA ADS] [CrossRef] [Google Scholar]
  • Debrunner H, Flückiger E, Lockwood J, McGuire R. 1984. Comparison of the solar cosmic ray events on May 7, 1978, and November 22, 1977. J Geophys Res 89 (A2): 769–774. [CrossRef] [Google Scholar]
  • Deeley K, Duldig M, Humble J. 2002. Re-analysis of the cosmic ray ground level enhancement of 4 May 1960. Adv Space Res 30 (4): 1049–1052. DOI: 10.1016/S0273-1177(02)00495-7. [CrossRef] [Google Scholar]
  • Desai M, Giacalone J. 2016. Large gradual solar energetic particle events. Living Rev Sol Phys 13 (1): 3. DOI: 10.1007/s41116-016-0002-5. [CrossRef] [Google Scholar]
  • Desorgher L, Flückiger E, Gurtner M, Moser M, Bütikofer R. 2005. A Geant 4 code for computing the interaction of cosmic rays with the earth’s atmosphere. Int J Mod Phys A 20 (A11): 6802–6804, 10.1142/S0217751X05030132. [NASA ADS] [CrossRef] [Google Scholar]
  • Dorman L. 2004. Cosmic Rays in the Earth’s Atmosphere and Underground, Kluwer Academic Publishers, Dordrecht. ISBN 1-4020-2071-6. [CrossRef] [Google Scholar]
  • Dorman L. 2006. Cosmic Ray Interactions, Propagation, and Acceleration in Space Plasmas. Astrophysics and Space Science Library 339, Springer, Dordrecht, ISBN 13-978-1-4020-5100-5. [Google Scholar]
  • Eastwood J, Nakamura R, Turc L, Mejnertsen L, Hesse M. 2017. The Scientific Foundations of Forecasting Magnetospheric Space Weather. Space Sci Rev 212(3–4): 1221–1252. DOI: 10.1007/s11214-017-0399-8. [CrossRef] [Google Scholar]
  • EURATOM. 2013. Council directive 2013/59/EURATOM of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. OJEC L13. [Google Scholar]
  • Ferrari A, Pelliccioni M, Rancati T. 2001. Calculation of the radiation environment caused by galactic cosmic rays for determining air crew exposure. Radiat Prot Dosim 93 (2): 101–114. DOI: 10.1093/oxfordjournals.rpd.a006418. [CrossRef] [Google Scholar]
  • Gaisser TK, Stanev T. 2010. Cosmic rays. In K. Nakamura et al., Review of particle physics. J Phys G, 37, 269–275. [Google Scholar]
  • Ganushkina N, Jaynes A, Liemohn M. 2017. Space weather effects produced by the ring current particles. Space Sci Rev, 212(3–4), 1315–1344. DOI: 10.1007/s11214-017-0412-2. [CrossRef] [Google Scholar]
  • Gil A, Usoskin I, Kovaltsov G, Mishev A, Corti C, Bindi V. 2015. Can we properly model the neutron monitor count rate? J Geophys Res, 120, 7172–7178. DOI: 10.1002/2015JA021654. [CrossRef] [Google Scholar]
  • Gleeson L, Axford W. 1968. Solar modulation of galactic cosmic rays. ApJ 154: 1011–1026. [NASA ADS] [CrossRef] [Google Scholar]
  • Gopalswamy N, Xie H, Yashiro S, Akiyama S, Mäkelä P, Usoskin I. 2012. Properties of ground level enhancement events and the associated solar eruptions during solar cycle 23. Space Sci Rev 171 (1–4): 23–60. [NASA ADS] [CrossRef] [Google Scholar]
  • Grieder P. 2001. Cosmic rays at Earth researcher’s reference manual and data book Elsevier Science: Amsterdam. ISBN 978-0-444-50710-5. [Google Scholar]
  • Hatton C. 1971. The neutron monitor. In Progress in Elementary Particle and Cosmic-ray Physics X, chap. 1, Elsevier Science: Amsterdam. ISBN 978-0-444-50710-5. [Google Scholar]
  • Humble J, Duldig M, Smart D, Shea M. 1991. Detection of 0.515 GEV solar protons on 29 September 1989 at Australian stations. Geophys Res Lett, 18 (4): 737–740. [CrossRef] [Google Scholar]
  • ICRP. 2007. ICRP Publication 103: The 2007 Recommendations of the International Commission on Radiological Protection. Ann ICRP 37 (2–4): 2007. [Google Scholar]
  • Klein K-L, Dalla S. 2017. Acceleration and propagation of solar energetic particles. Space Sci Rev 212 (3–4): 1107–1136. DOI: 10.1007/s11214-017-0382-4. [CrossRef] [Google Scholar]
  • Kocharov L, Pohjolainen S, Mishev A, Reiner MJ, Lee J, et al. 2017. Investigating the origins of two extreme solar particle events: Proton source profile and associated electromagnetic emissions. ApJ 839 (2): 79. DOI: 10.3847/1538-4357/aa6a13. [NASA ADS] [CrossRef] [Google Scholar]
  • Koskinen H, Baker D, Balogh A, Gombosi T, Veronig A, von Steiger R. 2017. Achievements and challenges in the science of space weather. Space Sci Rev 212 (3–4): 1137–1157. DOI: 10.1007/s11214-017-0390-4. [CrossRef] [Google Scholar]
  • Kovaltsov G, Mishev A, Usoskin I. 2012. A new model of cosmogenic production of radiocarbon 14C in the atmosphere. Earth Planet. Sci. Lett. 337: 114–120. DOI: 10.1016/j.epsl.2012.05.036. [NASA ADS] [CrossRef] [Google Scholar]
  • Kravtsova MV, Sdobnov VE. 2016. Ground level enhancement of cosmic rays on November 6, 1997: Spectra and anisotropy. JETP Lett 103 (1): 8–14. DOI: 10.1134/S0021364016010094. [CrossRef] [Google Scholar]
  • Kudela K. 2016. On low energy cosmic rays and energetic particles near Earth. CAOSP 46 (1): 15–70. [Google Scholar]
  • Kudela K, Usoskin I. 2004. On magnetospheric transmissivity of cosmic rays. Czech J Phys 54 (2): 239–254. [CrossRef] [EDP Sciences] [Google Scholar]
  • Latocha M, Beck P, Rollet S. 2009. AVIDOS – a software package for European accredited aviation Dosimetry. Radiat Prot Dosim 136 (4): 286–290. DOI: 10.1093/rpd/ncp126. [CrossRef] [Google Scholar]
  • Lewis B, Bennett L, Green A, Butler A, Desormeaux M, Kitching F, McCall M, Ellaschuk B, Pierre M. 2005. Aircrew dosimetry using the Predictive Code for Aircrew Radiation Exposure (PCAIRE). Radiat Prot Dosim 116 (1–4): 320–326. [CrossRef] [Google Scholar]
  • Lilensten L, Bornarel J. 2009. Space weather, environment and societies. Springer: Dordrecht ISBN 978-1-4020-4332-1. [Google Scholar]
  • Lockwood J, Debrunner H, Flükiger E, Grädel H. 1990a. Proton energy spectra at the sun in the solar cosmic-ray events on 1978 May 7 and 1984 February 16. ApJ 355 (1): 287–294. [CrossRef] [Google Scholar]
  • Lockwood JA, Debrunner H, Flükiger EO. 1990b. Indications for diffusive coronal shock acceleration of protons in selected solar cosmic ray events. J Geophys Res: Space Phys, 95 (A4), 4187–4201. [NASA ADS] [CrossRef] [Google Scholar]
  • Lovell JL, Duldig ML, Humble JE. 1998. An extended analysis of the September 1989 cosmic ray ground level enhancement. J Geophys Res: Space Phys, 103 (A10), 23733–23742. DOI: 10.1029/98JA02100. [CrossRef] [Google Scholar]
  • Macmillan S, Maus S, Bondar T, Chambodut A, Golovkov V, et al. 2003. The 9th-Generation International Geomagnetic Reference Field. Geophys J Int 155 (3): 1051–1056. DOI: 10.1111/j.1365-246X.2003.02102.x. [CrossRef] [Google Scholar]
  • Matthiä D, Heber B, Reitz G, Meier M, Sihver L, Berger T, Herbst K. 2009a. Temporal and spatial evolution of the solar energetic particle event on 20 January 2005 and resulting radiation doses in aviation. J Geophys Res: Space Phys, 114 (8): 8104. [CrossRef] [Google Scholar]
  • Matthiä D, Heber B, Reitz G, Sihver L, Berger T, Meier M. 2009b. The ground level event 70 on December 13th, 2006 and related effective doses at aviation altitudes. Radiat Prot Dosim 136 (4) 304–310. [CrossRef] [Google Scholar]
  • Matthiä D, Meier M, Reitz G. 2014. Numerical calculation of the radiation exposure from galactic cosmic rays at aviation altitudes with the PANDOCA core model. Space Weather 12 (3): 161–171. DOI: 10.1002/2013SW001022. [CrossRef] [Google Scholar]
  • Matthiä D, Sihver L, Meier M. 2008. Monte-Carlo calculations of particle fluences and neutron effective dose rates in the atmosphere. Radiat Prot Dosim 131 (2): 222–228. DOI: 10.1093/rpd/ncn130. [CrossRef] [Google Scholar]
  • Mavromichalaki H, Papaioannou A, Plainaki C, Sarlanis C, Souvatzoglou G, et al. 2011. Applications and usage of the real-time Neutron Monitor Database. Adv Space Res, 47, 2210–2222. DOI: 10.1016/j.asr.2010.02.019. [CrossRef] [Google Scholar]
  • Meier M, Trompier F, Ambrozova I, Kubancak J, Matthi D, Ploc O, Santen N, Wirtz M. 2016. CONCORD: Comparison of cosmic radiation detectors in the radiation field at aviation altitudes. J Space Weather Space Clim, 6): A24. DOI: 10.1051/swsc/2016017. [CrossRef] [Google Scholar]
  • Menzel H. 2010. The international commission on radiation units and measurements. J. ICRU 10 (2): 1–35. [Google Scholar]
  • Mertens C, Meier M, Brown S, Norman R, Xu X. 2013. NAIRAS aircraft radiation model development, dose climatology, and initial validation. Space Weather 11 (10): 603–635. DOI: 10.1002/swe.20100. [CrossRef] [Google Scholar]
  • Mewaldt R. 2006. Solar energetic particle composition, energy spectra, and space weather. Space Sci Rev 124 (1–4): 303–316. DOI: 10.1007/s11214-006-9091-0. [CrossRef] [Google Scholar]
  • Mishev A, Adibpour F, Usoskin I, Felsberger E. 2014. Computation of dose rate at flight altitudes during ground level enhancements no. 69, 70 and 71. Adv Space Res 55 (1): 354–362. DOI: 10.1016/j.asr.2014.06.020. [CrossRef] [Google Scholar]
  • Mishev A, Kocharov L, Usoskin I. 2014b. Analysis of the ground level enhancement on 17 May 2012 using data from the global neutron monitor network. J Geophys Res, 119, 670–679. DOI: 10.1002/2013JA019253. [NASA ADS] [CrossRef] [Google Scholar]
  • Mishev A, Poluianov S, Usoskin I. 2017. Assessment of spectral and angular characteristics of sub-GLE events using the global neutron monitor network. J Space Weather Space Clim, 7, A28. DOI: 10.1051/swsc/2017026. [CrossRef] [Google Scholar]
  • Mishev A, Usoskin I. 2013. Computations of cosmic ray propagation in the Earth’s atmosphere, towards a GLE analysis. J Phys Conf Ser, 409, 012152. DOI: 10.1088/1742-6596/409/1/012152. [CrossRef] [Google Scholar]
  • Mishev A, Usoskin I. 2015. Numerical model for computation of effective and ambient dose equivalent at flight altitudes: Application for dose assessment during GLEs. J Space Weather Space Clim 5 (3): A10. DOI: 10.1051/swsc/2015011. [CrossRef] [EDP Sciences] [Google Scholar]
  • Mishev A, Usoskin I. 2016. Analysis of the ground level enhancements on 14 July 2000 and on 13 December 2006 using neutron monitor data. Sol Phys 291 (4): 1225–1239. [CrossRef] [Google Scholar]
  • Mishev A, Usoskin I, Raukunen O, Paassilta M, Valtonen E, Kocharov L, Vainio R. 2018. First analysis of GLE 72 event on 10 September 2017: Spectral and anisotropy characteristics. Sol Phys, in press, DOI: 10.1007/s11207-018-1354-x. [Google Scholar]
  • Mishev A, Velinov P. 2011. Normalized Ionization Yield function for various nuclei obtained with full Monte-Carlo simulations. Adv Space Res 48 (1): 19–24. [CrossRef] [Google Scholar]
  • Mishev A, Velinov P. 2015. Time evolution of ionization effect due to cosmic rays in terrestrial atmosphere during GLE 70. J Atmos Sol Terr Phys 129: 78–86. [CrossRef] [Google Scholar]
  • Mishev A, Velinov P. 2018. Ion production and ionization effect in the atmosphere during the Bastille day GLE 59 due to high energy SEPs. Adv Space Res 61 (1): 316–325. DOI: 10.1016/j.asr.2017.10.023. [CrossRef] [Google Scholar]
  • Moraal H. 1976. Observations of the eleven-year cosmic-ray modulation cycle. Space Sci Rev 19 (6): 845–920. [CrossRef] [Google Scholar]
  • Moraal H, Belov A, Clem J. 2000. Design and co-ordination of multi-station international neutron monitor networks. Space Sci Rev 93 (1–2): 285–303. [CrossRef] [Google Scholar]
  • Moraal H, McCracken K. 2012. The time structure of ground level enhancements in solar cycle 23. Space Sci Rev 171 (1–4): 85–95. [CrossRef] [Google Scholar]
  • Nevalainen J, Usoskin I, Mishev A. 2013. Eccentric dipole approximation of the geomagnetic field: Application to cosmic ray computations. Adv Space Res 52 (1): 22–29. [CrossRef] [Google Scholar]
  • Pelliccioni M. 2000. Overview of fluence-to-effective dose and fluence-to-ambient dose equivalent conversion coefficients for high energy radiation calculated using the FLUKA Code. Radiat Prot Dosim 88 (4): 279–297. [CrossRef] [Google Scholar]
  • Petoussi-Henss N, Bolch W, Eckerman K, Endo A, Hertel N, Hunt J, Pelliccioni M, Schlattl H, Zankl M. 2010. Conversion Coefficients for Radiological Protection Quantities for External Radiation Exposures. Ann ICRP 40 (2–5): 1–257. [CrossRef] [Google Scholar]
  • Plainaki C, Mavromichalaki H, Laurenza M, Gerontidou M, Kanellakopoulos A, Storini M. 2014. The ground-level enhancement of 2012 May 17: Derivation of solar proton event properties through the application of the NMBANGLE PPOLA model. ApJ 785 (2): 160. DOI: 10.1088/0004-637X/785/2/160. [CrossRef] [Google Scholar]
  • Potgieter M. 2013. Solar modulation of cosmic rays. Living Rev Sol Phys, 10: 274. DOI: 10.12942/lrsp-2013-3. [CrossRef] [Google Scholar]
  • Pulkkinen T. 2007. Space weather: Terrestrial perspective. Living Rev Sol Phys 4 (1): 1–60. [CrossRef] [Google Scholar]
  • Reames D. 1999. Particle acceleration at the Sun and in the heliosphere. Space Sci Rev 90 (3–4): 413–491. [NASA ADS] [CrossRef] [Google Scholar]
  • Reames D. 2013. The two sources of solar energetic particles. Space Sci Rev 175 (1–4): 53–92. DOI: 10.1007/s11214-013-9958-9. [NASA ADS] [CrossRef] [Google Scholar]
  • Roesler S, Heinrich W, Schraube H. 2002. Monte Carlo calculation of the radiation field at aircraft altitudes. Radiat Prot Dosim 98 (4): 367–388. [CrossRef] [Google Scholar]
  • Sato T, Kataoka R, Yasuda H, Yashiro S, Kuwabara T, Shiota D, Kubo Y. 2014. Air shower simulation for WASAVIES: Warning system for aviation exposure to solar energetic particles. Radiat Prot Dosim 161 (1–4): 274–278. DOI: 10.1093/rpd/nct332. [CrossRef] [Google Scholar]
  • Sato T, Yasuda H, Niita K, Endo A, Sihver L. 2008. Development of PARMA: PHITS-based analytical radiation model in the atmosphere. Radiat Res, 170, 244–259. [CrossRef] [Google Scholar]
  • Schraube H, Leuthold G, Heinrich W, Roesler S, Combecher D. 2000. European program package for the calculation of aviation route doses version 3.0. Tech. Rep. D-85758, National Research Center for Environment and Health Institute of Radiation Protection, Neuherberg, Germany. [Google Scholar]
  • Shea M, Smart D. 1982. Possible evidence for a rigidity-dependent release of relativistic protons from the solar corona. Space Sci Rev 32: 251–271. [Google Scholar]
  • Shea M, Smart D. 1990. A summary of major solar proton events. Sol Phys 127: 297–320. [NASA ADS] [CrossRef] [Google Scholar]
  • Shea M, Smart D. 2000. Cosmic ray implications for human health. Space Sci Rev 93 (1–2): 187–205. [NASA ADS] [CrossRef] [Google Scholar]
  • Shea M, Smart D. 2012. Space weather and the ground-level solar proton events of the 23rd solar cycle. Space Sci Rev 171: 161–188. [CrossRef] [Google Scholar]
  • Simpson J. 1957. Cosmic-radiation neutron intensity monitor. Annals of The International Geophysical Year 4: 351–373. [Google Scholar]
  • Simpson J, Fonger W, Treiman S. 1953. Cosmic Radiation Intensity-time variation and their origin. I. Neutron intensity variation method and meteorological factors. Phys Rev 90: 934–950. [CrossRef] [Google Scholar]
  • Smart D, Shea M, Gentile L. 1993. The Relativistic Solar Proton Event of 15 June 1991. Proc. of 23th ICRC 19-30 Jul 1993, Calgary, Canada, Vol. 3: 59–62. [Google Scholar]
  • Spurny F, Votockova I, Bottollier-Depois J. 1996. Geographical influence on the radiation exposure of an aircrew on board a subsonic aircraft. Radioprotection 31 (2): 275–280. [Google Scholar]
  • Spurny F, Dachev T, Kudela K. 2003. Increase of onboard aircraft exposure level during a solar flare. Bezpecnost Jaderne Energie 11 (3–4): 103–107. [Google Scholar]
  • Stoker P. 1995. Relativistic solar proton events. Space Sci Rev 73 (3–4): 327–385. DOI: 10.1007/BF00751240. [CrossRef] [Google Scholar]
  • Stoker P, Dorman L, Clem J. 2000. Neutron monitor design improvements. Space Sci Rev 93 (1–2): 361–380. [NASA ADS] [CrossRef] [Google Scholar]
  • Takada M, Lewis B, Boudreau M, Anid H, Bennett L. 2007. Modeling of aircrew radiation exposure from galactic cosmic rays and solar particle events. Adv Geosci: Vol 8: Sol Terr, 233–243. DOI: 10.1142/6494-vol8 [Google Scholar]
  • Tsyganenko N. 1989. A magnetospheric magnetic field model with a warped tail current sheet. Planet Space Sci 37 (1): 5–20. [NASA ADS] [CrossRef] [Google Scholar]
  • Tuohino S, Ibragimov A, Usoskin I, Mishev A. 2018. Upgrade of GLE database: Assessment of effective dose rate at flight altitude. Adv Space Res 62 (2): 398–407. DOI: 10.1016/j.asr.2018.04.021. [CrossRef] [Google Scholar]
  • Usoskin I, Alanko-Huotari K, Kovaltsov G, Mursula K. 2005. Heliospheric modulation of cosmic rays: Monthly reconstruction for 1951–2004. J Geophys Res 110: A12108. [NASA ADS] [CrossRef] [Google Scholar]
  • Usoskin I, Bazilevskaya G, Kovaltsov G. 2011. Solar modulation parameter for cosmic rays since 1936 reconstructed from ground-based neutron monitors and ionization chambers. J Geophys Res 116: A02104. DOI: 10.1029/2010JA016105. [NASA ADS] [CrossRef] [Google Scholar]
  • Usoskin I, Gil A, Kovaltsov G, Mishev A, Mikhailov V. 2017. Heliospheric modulation of cosmic rays during the neutron monitor era: Calibration using PAMELA data for 2006–2010. J Geophys Res: Space Phys 122 (4): 3875–3887. DOI: 10.1002/2016JA023819. [NASA ADS] [CrossRef] [Google Scholar]
  • Usoskin IG, Desorgher L, Velinov P, Storini M, Flückiger E, Bütikofer R, Kovaltsov G. 2009. Ionization of the Earth’s atmosphere by solar and galactic cosmic rays. Acta Geophys 57 (1): 88–101. [NASA ADS] [CrossRef] [Google Scholar]
  • Vainio R, Desorgher L, Heynderickx D, Storini M, Flückiger E, et al. 2009. Dynamics of the Earth’s particle radiation environment. Space Sci Rev 147 (3–4): 187–231. [NASA ADS] [CrossRef] [Google Scholar]
  • Vashenyuk E, Balabin Y, Gvozdevsky B. 2011. Features of relativistic solar proton spectra derived from ground level enhancement events (GLE) modeling. Astrophys Space Sci Trans 7 (4): 459–463. DOI: 10.5194/astra-7-459-2011. [CrossRef] [Google Scholar]
  • Vashenyuk E, Balabin Y, Perez-Peraza J, Gallegos-Cruz A, Miroshnichenko L. 2006. Some features of the sources of relativistic particles at the Sun in the solar cycles 21–23. Adv Space Res 38 (3): 411–417. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Velinov P, Asenovski S, Kudela K, Lastovička J, Mateev L, Mishev A, Tonev P. 2013. Impact of cosmic rays and solar energetic particles on the Earth’s ionosphere and atmosphere. J Space Weather Space Clim 3: A14. DOI: 10.1051/swsc/2013036. [CrossRef] [Google Scholar]
  • Wilson J, Slaba T, Badavi F, Reddell B, Bahadori A. 2014. Advances in NASA radiation transport research: 3DHZETRN. Life Sci Space Res 2: 6–22. DOI: 10.1016/j.lssr.2014.05.003. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.